吉林师范大学博达学院《机器学习案例分析1》2021-2022学年第一学期期末试卷_第1页
吉林师范大学博达学院《机器学习案例分析1》2021-2022学年第一学期期末试卷_第2页
吉林师范大学博达学院《机器学习案例分析1》2021-2022学年第一学期期末试卷_第3页
吉林师范大学博达学院《机器学习案例分析1》2021-2022学年第一学期期末试卷_第4页
吉林师范大学博达学院《机器学习案例分析1》2021-2022学年第一学期期末试卷_第5页
已阅读5页,还剩1页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共3页吉林师范大学博达学院

《机器学习案例分析1》2021-2022学年第一学期期末试卷题号一二三四总分得分批阅人一、单选题(本大题共20个小题,每小题1分,共20分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、某机器学习项目需要对大量的图像进行分类,但是计算资源有限。以下哪种技术可以在不显著降低性能的前提下减少计算量?()A.模型压缩B.数据量化C.迁移学习D.以上技术都可以考虑2、某机器学习项目需要对文本进行主题建模,以发现文本中的潜在主题。以下哪种方法常用于文本主题建模?()A.潜在狄利克雷分配(LDA)B.非负矩阵分解(NMF)C.概率潜在语义分析(PLSA)D.以上方法都常用3、在一个分类问题中,如果数据分布不均衡,以下哪种方法可以用于处理这种情况?()A.过采样B.欠采样C.生成对抗网络(GAN)生成新样本D.以上方法都可以4、在机器学习中,降维是一种常见的操作,用于减少特征的数量。以下哪种降维方法是基于线性变换的?()A.主成分分析(PCA)B.线性判别分析(LDA)C.t-SNED.以上都是5、考虑一个时间序列预测问题,数据具有明显的季节性特征。以下哪种方法可以处理这种季节性?()A.在模型中添加季节性项B.使用季节性差分C.采用季节性自回归移动平均(SARIMA)模型D.以上都可以6、在一个医疗诊断项目中,我们希望利用机器学习算法来预测患者是否患有某种疾病。收集到的数据集包含患者的各种生理指标、病史等信息。在选择合适的机器学习算法时,需要考虑多个因素,如数据的规模、特征的数量、数据的平衡性等。如果数据量较大,特征维度较高,且存在一定的噪声,以下哪种算法可能是最优选择?()A.逻辑回归算法,简单且易于解释B.决策树算法,能够处理非线性关系C.支持向量机算法,在小样本数据上表现出色D.随机森林算法,对噪声和异常值具有较好的容忍性7、在一个图像生成任务中,例如生成逼真的人脸图像,生成对抗网络(GAN)是一种常用的方法。GAN由生成器和判别器组成,它们在训练过程中相互对抗。以下关于GAN训练过程的描述,哪一项是不正确的?()A.生成器的目标是生成尽可能逼真的图像,以欺骗判别器B.判别器的目标是准确区分真实图像和生成器生成的图像C.训练初期,生成器和判别器的性能都比较差,生成的图像质量较低D.随着训练的进行,判别器的性能逐渐下降,而生成器的性能不断提升8、机器学习在图像识别领域也取得了巨大的成功。以下关于机器学习在图像识别中的说法中,错误的是:机器学习可以用于图像分类、目标检测、图像分割等任务。常见的图像识别算法有卷积神经网络、支持向量机等。那么,下列关于机器学习在图像识别中的说法错误的是()A.卷积神经网络通过卷积层和池化层自动学习图像的特征表示B.支持向量机在图像识别中的性能通常不如卷积神经网络C.图像识别算法的性能主要取决于数据的质量和数量,与算法本身关系不大D.机器学习在图像识别中的应用还面临着一些挑战,如小样本学习、对抗攻击等9、在机器学习中,模型的可解释性也是一个重要的问题。以下关于模型可解释性的说法中,错误的是:模型的可解释性是指能够理解模型的决策过程和预测结果的能力。可解释性对于一些关键领域如医疗、金融等非常重要。那么,下列关于模型可解释性的说法错误的是()A.线性回归模型具有较好的可解释性,因为它的决策过程可以用公式表示B.决策树模型也具有一定的可解释性,因为可以通过树形结构直观地理解决策过程C.深度神经网络模型通常具有较低的可解释性,因为其决策过程非常复杂D.模型的可解释性和性能是相互矛盾的,提高可解释性必然会降低性能10、想象一个图像分类的竞赛,要求在有限的计算资源和时间内达到最高的准确率。以下哪种优化策略可能是最关键的?()A.数据增强,通过对原始数据进行随机变换增加数据量,但可能引入噪声B.超参数调优,找到模型的最优参数组合,但搜索空间大且耗时C.模型压缩,减少模型参数和计算量,如剪枝和量化,但可能损失一定精度D.集成学习,组合多个模型的预测结果,提高稳定性和准确率,但训练成本高11、假设正在开发一个用于推荐系统的深度学习模型,需要考虑用户的短期兴趣和长期兴趣。以下哪种模型结构可以同时捕捉这两种兴趣?()A.注意力机制与循环神经网络的结合B.多层感知机与卷积神经网络的组合C.生成对抗网络与自编码器的融合D.以上模型都有可能12、假设要对一个复杂的数据集进行降维,以便于可视化和后续分析。以下哪种降维方法可能是最有效的?()A.主成分分析(PCA),寻找数据的主要方向,但可能丢失一些局部信息B.线性判别分析(LDA),考虑类别信息,但对非线性结构不敏感C.t-分布随机邻域嵌入(t-SNE),能够保持数据的局部结构,但计算复杂度高D.以上方法结合使用,根据数据特点和分析目的选择合适的降维策略13、在一个股票价格预测的场景中,需要根据历史的股票价格、成交量、公司财务指标等数据来预测未来的价格走势。数据具有非线性、非平稳和高噪声的特点。以下哪种方法可能是最合适的?()A.传统的线性回归方法,简单直观,但无法处理非线性关系B.支持向量回归(SVR),对非线性数据有一定处理能力,但对高噪声数据可能效果不佳C.随机森林回归,能够处理非线性和高噪声数据,但解释性较差D.基于深度学习的循环神经网络(RNN)或长短时记忆网络(LSTM),对时间序列数据有较好的建模能力,但容易过拟合14、在一个强化学习问题中,如果环境的状态空间非常大,以下哪种技术可以用于有效地表示和处理状态?()A.函数逼近B.状态聚类C.状态抽象D.以上技术都可以15、在一个图像分类任务中,如果需要快速进行模型的训练和预测,以下哪种轻量级模型架构可能比较适合?()A.MobileNetB.ResNetC.InceptionD.VGG16、在进行机器学习模型部署时,需要考虑模型的计算效率和资源占用。假设我们训练了一个复杂的深度学习模型,但实际应用场景中的计算资源有限。以下哪种方法可以在一定程度上减少模型的计算量和参数数量?()A.增加模型的层数和神经元数量B.对模型进行量化,如使用低精度数值表示参数C.使用更复杂的激活函数,提高模型的表达能力D.不进行任何处理,直接部署模型17、在自然语言处理任务中,如文本分类,词向量表示是基础。常见的词向量模型有Word2Vec和GloVe等。假设我们有一个大量的文本数据集,想要得到高质量的词向量表示,同时考虑到计算效率和效果。以下关于这两种词向量模型的比较,哪一项是不准确的?()A.Word2Vec可以通过CBOW和Skip-gram两种方式训练,灵活性较高B.GloVe基于全局的词共现统计信息,能够捕捉更全局的语义关系C.Word2Vec训练速度较慢,不适用于大规模数据集D.GloVe在某些任务上可能比Word2Vec表现更好,但具体效果取决于数据和任务18、在深度学习中,卷积神经网络(CNN)被广泛应用于图像识别等领域。假设我们正在设计一个CNN模型,对于图像分类任务,以下哪个因素对模型性能的影响较大()A.卷积核的大小B.池化层的窗口大小C.全连接层的神经元数量D.以上因素影响都不大19、在使用深度学习进行图像分类时,数据增强是一种常用的技术。假设我们有一个有限的图像数据集。以下关于数据增强的描述,哪一项是不正确的?()A.可以通过随机旋转、翻转、裁剪图像来增加数据的多样性B.对图像进行色彩变换、添加噪声等操作也属于数据增强的方法C.数据增强可以有效地防止模型过拟合,但会增加数据标注的工作量D.过度的数据增强可能会导致模型学习到与图像内容无关的特征,影响模型性能20、机器学习中,批量归一化(BatchNormalization)的主要作用是()A.加快训练速度B.防止过拟合C.提高模型精度D.以上都是二、简答题(本大题共5个小题,共25分)1、(本题5分)简述在智能建筑中,机器学习的应用。2、(本题5分)解释如何使用机器学习进行冰川变化监测。3、(本题5分)解释机器学习中变分自编码器(VAE)的原理。4、(本题5分)机器学习在疼痛医学中的研究进展如何?5、(本题5分)简述机器学习中的迁移学习及其应用场景。三、应用题(本大题共5个小题,共25分)1、(本题5分)借助运动医学数据评估运动损伤和制定康复计划。2、(本题5分)依据系统生物学数据构建生物系统模型。3、(本题5分)基于哲学研究数据探索哲学思想的发展和演变。4、(本题5分)借助健身运动数据为用户制定个性化健身方案。5、(本题5分)利用AdaBoost算法对信用卡欺诈数据进行检测,计算误报

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论