2025高考数学专项复习:数列的概念与简单表示法(含答案)_第1页
2025高考数学专项复习:数列的概念与简单表示法(含答案)_第2页
2025高考数学专项复习:数列的概念与简单表示法(含答案)_第3页
2025高考数学专项复习:数列的概念与简单表示法(含答案)_第4页
2025高考数学专项复习:数列的概念与简单表示法(含答案)_第5页
已阅读5页,还剩31页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025高考数学专项复习第七章数列

第七章

第一节数列的概念与简单表示法

课标解读考向预测

1.了解数列的概念和几种简单的表示方法(列预计2025年高考会以特殊数列为主,考查数

表法、图象法、解析式法).列的通项公式与前n项和公式以及递推公式,

2.了解数列是自变量为正整数的一类特殊函在选择题、填空题或解答题中都可能会出现,

数.难度适中.

必备知识——强基础

知识梳理

1.数列的定义

按照画确定的顺序排列的一列数称为数列,数列中的画每一个数叫做这个数列的项.

2.数列的表示方法

列表法列出表格表示〃与诙的对应关系

图象法把点厨(〃,如)画在平面直角坐标系中

数列的第〃项源与它的画序号〃之间的对应关系可以用一个式子来

通项公式

解析表示,那么这个式子叫做这个数列的通项公式

式法如果一个数列的相邻两项或多项之间的关系可以用一个式子来表示,那

递推公式

么这个式子叫做这个数列的递推公式

3.数列的分类

分类标准类型满足条件

项数有穷数列项数画有限

无穷数列项数画无限

递增数列a〃+11。71

递减数列11081V其中“WN*

项与项间的大

小关系常数列斯+1=斯

从第2项起,有些项大于它的前一项,有些项小于

摆动数列

它的前一项的数列

4.数列的前”项和

(1)表示:在数列{斯}中,S"=|09|ai+°2+…+斯叫做数列的前n项和.

fSi,n=\>

(2)飙与S,的关系:若数列{斯}的前〃项和为S”则斯=1、

〔S"—ST,2.

诊断自测

1.概念辨析(正确的打“小,错误的打“x”)

(1)相同的一组数按不同顺序排列时都表示同一个数列.()

(2)如果数列{厮}的前“项和为S”,则对任意"WN*,都有a”+i=S"+i—S“()

(3)在数列{诙}中,对于任意正整数机,“,am+n=amn+i,若的=1,则。2=2.()

(4)任何一个数列都有唯一的通项公式.()

答案(l)x(2)4(3)4(4)x

2.小题热身

(1)在数列41,6,小,2,小,…中,第9个数是()

A.3^3B.3

C.回D.10

答案B

解析观察题目中的数列可知,根号里面的数是公差为1的等差数列,即,,第9个数为也

=3.故选B.

⑵(多选)已知数列的前4项为2,0,2,0,则依此归纳该数列的通项公式可能是()

_f2>〃为奇数,

n

A.an=(-l)~'+lB.an=\小伸将

[0,w为偶数

C.a〃=2sin)D.〃〃=cos(九一1)兀+1

答案ABD

r77r

解析对〃=1,2,3,4进行验证,a〃=2sin1"不符合题意,其他都可能.故选ABD.

(3)(人教A选择性必修第二册4.1练习T3改编)在数列{斯}中,〃1=1,即+1=1+;,则。5=

答案I

1113

解析由题意,令〃=1,可得。2=1+/=2;令〃=2,可得。3=1+7=1+5=5;令〃=3,

a\aizz

可得〃4=1+;=1+2=0;令〃=4,可得。5=1+;=1+:=*

〃39J4423

23

(4)(人教A选择性必修第二册4.1练习T1改编)下列从左到右排列的图形中,小正方形个数

构成的数列的一个通项公式为an=________.

答案

解析由题图可知,从中间一行向上、向下每经过一行,小正方形的数量减少1,直至减少

r1+(〃—1)](n—1)

到1,所以〃〃=九+2(〃-1)+2(〃-2)+…+2x1,所以〃〃="+2・=/.

考点探究提素养

考点一利用斯与S,的关系求通项公式(多考向探究)

考向1已知S〃求an

例1(2023•山西大学附中三模)已知数列{斯}满足条件/+*/2+/〃3+...+玄斯=2〃+5,则

数列{斯}的通项公式为.

14,n=1,

答案a=

n2#i,心2

解析当〃=1时,“1=14…+于斯=2〃+5,所以缄手俏+…

1斯T=2九+3(及三2),当时,两式相减得,W簿〃=(2几+5)—(2几+3)=2,化简得an

fl4,〃=1,

=2〃+i,又见=14不符合上式,所以

[2,及与2.

【通性通法】

已知工求为的步骤

步骤一利用〃1=S1,求出41

用n~\替换S/7中的〃得到一个新的关系,利用斯=57—5鹿-1(九》2),求出当儿22

步骤二

时许的表达式

步骤三检验n=l时的表达式是否可以与的表达式合并

【巩固迁移】

1.已知数列{斯}的前〃项和8〃=川+1,则斯=

2,〃=1,

答案〈

\2n—1,€N*

==22

解析当n=1时,ai=N=2;当〃22时,anSn—5n-in+l—[(n—1)+l]=2n—1.显然

当n=\时,不满足上式,

(2,〃=1,

故斯=〈*

12〃一1,几22,H€N.

考向2已知〃〃与S〃的关系求an

例2已知数列{斯}的刖〃项和为S".若。1=2,Cln+l=Sn,贝U。100=()

A.297B.298

C.2"D.2100

答案C

=

解析当〃》2时,由Cln+lSn①,可得CLn—Sn-\②,两式相减得,斯+1—(2n—(2n9所以

斯+1=2〃〃,〃22,当〃=1时,〃2=SI=〃I=2,故数列{斯}从第2项开始,是公比为2的等比

(2,〃=1,

数列,所以,〃=12八-1>2所以。1。。=299.故选C.

【通性通法】

S〃与为关系问题的解题策略

根据所求结果的不同要求,将问题向不同的两个方向转化.

策略一利用O"=S"—ST(",2)转化为只含s”Si的关系式,再求解

策略二利用s〃一5广1=斯5三2)转化为只含斯,斯—1的关系式,再求解

【巩固迁移】

2.(2024.广东中山一中阶段考试)设S.是数列{呢}的前"项和,已知©=1,斯=一S.S"T(〃\2),

==

贝!JSn,an.

1'n=\,

解析依题意得Si-S产STS(心2),整理得得一?一=1,又9=:=1,则数列小是以

1为首项,1为公差的等差数列,因此1=1+(〃-1)X1=小即&=;,・•・当心2时,an=—

1,n=l,

Sn,S-\=-7]、.又当〃=1时,41=1,.•・〃〃=

nn(〃一

考点二利用递推关系求通项公式(多考向探究)

考向1累加法

例3(2024•江苏镇江一中高三月考)在数列{斯}中,句=2,斯+i=a.+ln(1+力,则斯=()

A.2+lnnB.2+(n—l)lnn

C.2+nlnnD.1+n+lnn

答案A

M+1

解析因为斯+i—斯=lnn=ln(n+1)—Inn,所以。2—〃i=ln2—In1,的一〃2=ln3—In2,

=

〃4—«3=ln4—In3,…,an—斯-i=ln〃一In(n—1)(〃22),把以上各式分别相加得斯—ailnn

—In1,则斯=2+ln〃(〃22),且。i=2也适合该式,因此斯=2+ln€N*).故选A.

【通性通法】

形如火+1—斯=7(〃)的数列,利用累加法,即利用公式an—(an—an-i)+(an-1an-2)+...+(«2

—即可求数列{〃〃}的通项公式.

【巩固迁移】

3.已知数列{斯}满足〃i=l,a2=2,斯+2—2斯+1+斯=3,则。ioo=.

解析由已知,得(诙+2—斯+1)—(。〃+1—〃〃)=/,又—〃1=1,・,•数歹U{斯+1—是首项为1,

公差为3的等差数列,an+l—斯=1+^("—1)=-2-',斯―斯-1=多…,。3—。2=方,〃2—

—2,**•斯一〃i=(斯一斯一i)+…+(。3—。2)+(。2—〃1)=卜(2+3+…+"),an=(〃三2),

5051

〃ioo=-2~,

考向2累乘法

例4(2024•湖北黄冈质检)在数列{&}中,即+1=前立斯(w€N*),且内=4,则数列{诙}的通

项公式为an=.

答案TTiTT

解析由即+1=六即,得Y=号,故誉=提詈4…,念=*(62),以上式子累

士"a12n—3n—2n—12一,“、,8

乘黄,n7,-Z-U1=s(―1、.因为〃i=4,所以斯=/―1、(几22).又的

34n—1nn-r1n(〃十1)n(〃十1)

=4满足上式,所以an=秣(“I).

【通性通法】

形如U三=A")的数列,常令〃分别为1,2,3,…,”一1,代入詈^干⑼,再把所得的(〃一

1)个等式相乘,利用斯=a瑶崇…•念(G2)即可求数列{斯}的通项公式.

提醒:利用累乘法,易出现两个方面的问题:一是在连乘的式子中只写到詈,漏掉s而导致

a\

错误;二是根据连乘求出斯之后,不注意检验S是否成立.

【巩固迁移】

4.数列{。〃}满足〃i=1,斯=。1+2。2+3。3+…+(九一1)斯-1(〃22,〃€N"),则〃6=.

答案360

解析由题意得斯+1=〃1+2〃2+3。3+…+("-l)an-\~\~nan①,当〃=1时,仅=。1,当〃22

=

时,ana[-\-2a2~\~3ci3~\~...+(n~\)an-i②,①一②得Ctn+1dn几〃",所以'〃八+1(〃+

1)斯(42),所以41=1,詈=1,詈=3,1=4,…,旦-=〃,累乘得诙=等-(心2),所以

〃2CLn-\乙

6!…

〃6=~2-=360.

考向3构造法

例5(1)在数列{斯}中,已知刃=2,«„+i=T^rT(«€N*),则斯的表达式为________.

J斯十1

2

答案an=§

解析数列{斯}中,由勿=2,斯+i=Utr(〃eN*),可得」一=3+;,所以数歹“当是首项

5an~v1an+iI。扪

为士,公差为3的等差数列,所以:=1+3("_1)=6;5,可得斯=«2

2anZZ6〃一5

n+1

(2)(2024•江西九江模拟)已知数列{斯}中,ai=3,an+1=3an+2x3,n€N*,则数列{四}的通

项公式为.

答案斯=(2〃-1)x3"

解析由*1=3斯+2x3〃+i,得制=竽+等制一竽=2,即数列用是首项为1,

公差为2的等差数列,•,学=2〃-L得斯=(2〃-1)x3".

(3)(2023・四川师大附中二诊)已知数列{为}满足斯+尸2斯+;,且{斯}的前8项和为761,则0

左安—

口木2

解析数列{斯}满足斯+1=2斯+:,整理得斯+1+3=2(斯+0,若。i=—则斯=—/,显

Ia〃+i+]

,"十;,是以⑶+3为首项,2为

然不符合题意,所以斯?一5则——r=2(常数),所以数列

斯+2

公比的等比数列,所以斯整理得斯由于前8项和为761,

所以S8=(ai+,x(l+2+…+27)—8x3=(ai+'x^^■—4=255(m+;)—4=761,解得a\

_5

~2-

【通性通法】

数列中求通项的常见构造法

形如an+\=pan+q(p,q可构造飙+i+4=p(a“+#,转化为等比数列求解.也可以与类比

为常数,pgO且p¥l)的递式a”=p。"-i+q作差,由斯+i—a”=p(a”一出―1),构造{为+1—斯}

推式为等比数列,然后利用累加法求通项

形如a"+i=pa〃+d'(/#O当p=d时,两边同除以〃*+]转化为关于,扰的等差数列;当p丰d

且加1,分0且存1)的递

时,两边可以同除以cT1得6f+i—5d"+d'转化为小+i—5仇+d,

推式

然后利用构造法求解

取倒数得一—〃•〃+".当a—b时,数列是等差数列;

形如念+1—人上(〃存0)((

u\CClfi。八+1KinQInCl[斯J

1bc_

的递推式当火纺时,令瓦=/,则儿+1=:。〃+;;,然后利用构造法求解

Clfi0101

【巩固迁移】

5.(2023•湖南株洲模拟)数列{斯}中,ai=l,即+1=/"(〃€N*),则高是这个数列的第()

A.100项B.101项

C.102项D.103项

答案A

解析由a“+i=2?;(〃eN*),得_=";}2=:+]则:=;+£("-1)=1+*>L1)=生姜,

。〃十2斯+12斯斯2cin222

222

・,・〃“=〃+],令几+]=101,得〃=100.故选A.

6.(2024•浙江诸暨中学质检)已知数列{斯}满足〃i=l,斯+1=3斯+2(九€N*),则数列{诙}的通

项公式为________

答案斯=2-3〃-1—1

二的号=3,又ai+l=2,,数列{斯+1}

=

解析an+i3an~\~29•二斯+i+1=3(斯+1),

是首项为2,公比为3的等比数列,.•.&+1=2-3"-1,.•.%=23厂1—1.

51

7.已知在数列{斯}中,。1=布斯+1=揖〃+⑸,则〃〃=.

32

答案施一五

51?2

解析因为的=不,。”+1=]斯+团,所以2"+%”+1=铲2"。”+1,整理得2"+1斯+1—3=](2"。”

424

-3),所以数列{2'呢一3}是以2的-3=一§为首项,§为公比的等比数列,所以2"以一3=—q

<2Y-132

x®'解得斯=*一

考点三数列的性质及其应用(多考向探究)

考向1数列的周期性

例6(2024•哈尔滨质检)已知数列{呢}的前n项积为Tn,©=2且斯+i=l—贝!|7^024=

答案1

解析:"2=1—2=;,的=1—F=—1,。4=1—5=2=。1,•数列{%}是周期为3的

数列.又的。2a3=24x(—l)=—1,且2024=3x674+2,...办24=(-1)67%2023,。2024=1*2义5=

1.

【通性通法】

解决数列周期性问题,根据给出的关系式求出数列的若干项,通过观察归纳出数列的周期,

进而求出有关项的值或前〃项和.

【巩固迁移】

8.(2024•江西临川一中高三质检)无穷数列{小}满足:只要他=%(p,q€N*),必有他+i=%+

i,则称{斯}为“和谐递进数列”.若{%}为“和谐递进数列“,S”为其前”项和,且0=1,勿=

2,04=1,GgH-(Z8=6,贝!J。7=,52023=-

答案14719

解析因为数列{诙}是“和谐递进数列“,且。1=。4=1,<22=2,所以45=。2=2,同理有°3=

。6,。7=。4=I,。8=45=2,又疑+。8=6,所以俏=。6=4,则数列{4”}:=1,。2=2,的

=4,°4=1,。5=2,。6=4,6/7=1,as=2,故数列{④}是以3为周期的数列,所以S2023

=$674x3+1=(1+2+4)x674+1=4719.

考向2数列的单调性

例7已知数列{%}的通项公式为诙=/—2M(w€N*),则/<1”是“数列{为}为递增数列”的

()

A.充分不必要条件

B.必要不充分条件

C.充要条件

D.既不充分也不必要条件

答案A

解析若数列{斯}为递增数列,则有(Zn+i—斯>0,/.(«+1)2—2^(/1+1)—n2+2An—2n-\-l—

22>0,即2〃+1>2%对任意的〃€N*都成立,于是有即『""I)=',:由2<1可推得衣,,

但反过来,由力<!不能得到ki,•••“ki”是“数列{斯}为递增数列”的充分不必要条件.故选

A.

【通性通法】

解决数列的单调性问题的常用方法

作差比较法根据斯+1—斯的符号判断数列{诙}是递增数列、递减数列还是常数列

作商比较法根据“:+1(斯>0或许<0)与1的大小关系进行判断

an

写出数列对应的函数,利用导数或利用基本初等函数的单调性探求其单调性,

目标函数法

再将函数的单调性对应到数列中去

【巩固迁移】

9.(2024•湖北宜昌阶段考试)数列{诙}的通项公式为诙=("+1)(总(〃€N*),则该数列()

A.递增B.递减

C.先递增后递减D.先递减后递增

答案C

(72+1)w

解析因为诙>0,令・>1(心2),贝小/c、"T>1,整理得„>o,解得w<9,即当"<9

时,斯>斯-1.同理,令2-=1(〃22),即当九=9时,〃8=。9.令-^-<1(几22),得及>9,即当〃>9

。八—1斯-1

时,斯<斯.1.综上,数列{斯}从第1项到第8项递增,从第9项起递减,即数列{斯}先递增后

递减.故选C.

10.已知数列{如}满足斯+i=2a〃+l,°1=1,若6”=4诙一层+4〃为递增数列,则:的取值范

围为()

A.1+℃)B.

C.(|,+=o)D.©,+=0)

答案C

解析因为在数列{小}中,斯+1=2斯+1,ai=l,则有斯+1+1=2(即+1),而ai+l=2,因

此数歹打诙+1}是首项为2,公比为2的等比数列,©+1=2",即斯=2"—1,则勿=〃2"—1)

n+12

一层+4〃,因为数列{d}为递增数列,即V"WN*,bn+i-b„>Q,则A(2-l)-(n+l)+4(n

2〃—32n—32〃—1

=

+1)—,(2"—1)—/+4川=卷2〃-2〃+3>0,则尢>~2«-,令金=一一,贝!Icn+1—cn~^+\~~

2〃—35—2H3

”WN*,当时,cn+1>cn,当〃》3时,cn+l<c„,于是得C3=R是数列{c〃}

的最大项,即当n=3时,写为得最大值看从而得忌,所以力的取值范围为偿,+—

Zoo\oJ

故选c.

考向3数列的最值

例8(2023•四川成都模拟)已知数列{为}满足斯=2"("+1)(同,则数列{斯}的最大项为

()

A.第4项B.第5项

C.第6项D.第7项

答案D

1'

解析假设第〃项最大("N2),则有■

dn2Cln+1

fIn(n+1)

又"€N*,所以"=7,即数列

2n(〃+l)

{如}的最大项为第7项.故选D.

【通性通法】

求数列的最大项与最小项的常用方法

单调性法根据数列的单调性判断

不等式法利用、(九22)确定最大项,利用伽22)确定最小项

Clndn+1〃“+1

【巩固迁移】

2

11.(2024•河南洛阳一高质检)若数列{斯}的前九项积与=1一叩,则四的最大值与最小值之

和为()

A.—1B.y

7

C.2D.

答案C

解析,数列{斯}的前"项积与=1一,",当”=1时,41=,;当心2时,与-1=1一年("-1),

]_斗

""=念=]_2([1)=1^=1+景?,当”=1时也适合上式‘'""=1+5匕',当

几W4时,数列{斯}递减,且斯VI;当及25时,数列{斯}递减,且所>1,故斯的最大值为

的=3,最小值为〃4=一1,〃的最大值与最小值之和为2.故选C.

课时作业

基础巩固练

一、单项选择题

1.若一数列为1,37,314,321,则398是这个数列的()

A.第12项B.第13项

C.第14项D.第15项

答案D

解析1=37X0,37=37X1,314=37X2,321=37X3,因此符合题意的一个通项公式为斯=3751),

由375-1)=398,解得〃=15,所以398是这个数列的第15项.故选D.

2.(2023・莆田质检)九连环是我国从古至今广泛流传的一种益智游戏,它用九个圆环相连成串,

以解开为胜.在某种玩法中,用斯表示解下〃WN*)个圆环所需的最少移动次数,若

(斯+2,鼠为奇数,

m=1,且斯+1=,/田吟则解下6个圆环所需的最少移动次数为()

[2斯一1,w为偶数,

A.13B.15

C.16D.29

答案B

”(an+2>w为奇数>

角华析1,G/j+l=I„。2=。1+2=3,。3=2。2-1=5,04=的+2=7,

[2%一1,w为偶数,

。5=2。4—1=13,。6=卷+2=15.故选B.

3.若数列{。“}满足41=242=2,-且斯+2=|斯+1一斯I,则{斯}的前100项和为()

A.67B.68

C.134D.167

答案B

解析因为41=2.2=2,所以6=2,<22=1,因为斯+2=%+1—斯|,所以数列的项依次为2,

b1,0,1,1,0,所以从第2项起,3项一个循环,所以{%}的前100项和为2+33XQ

+1+0)=68.故选B.

4.已知数列{斯}的前〃项和为S”即+i=S,+2"+i,句=2,则S.=()

A.(n+l)-2nB.(〃+1>2厂1

C.D.n-2n

答案D

解析因为斯+i=S“+2'+i,则S.+i—S“=S.+2"+i,于是得泼一聿=1,因此数歹住:是公差

为1的等差数列,首项蓊=1,则:=1+(〃-1)x1,所以5.=〃・2".故选D.

5.(2024•山东济南莱芜第一中学质检)已知数列{斯}的前n项和S〃满足SnSi=Sn+i(n€N*),且

6/1=2,那么。7=()

A.128B.16

C.32D.64

答案D

解析因为数列{%}的前〃项和S,满足SS=S"+i("eN*),©=2,所以S.+1=2S”即罟=

2,所以数列{Sj是以2为首项,2为公比的等比数列,所以&=2x2〃-1=2〃.所以当〃22时,

斯=%一S〃—i=2〃-2〃r=2『i.所以〃7=26=64.故选D.

6.(2024・吉林四平实验中学阶段考试)已知数列{斯}满足勾=1,斯一为+1=九斯斯+15WN*),

则斯=()

/一〃—〃+2

A.-—B.2

22

C'层一〃D%2-〃+2

答案D

解析由题意,得1—;=小则当〃22时,;一=n—1,——――■—=n—2,…,~~—

\=1,所以]—十=1+2+…1)="2"(〃N2),所以十="2〃+]="-/",即时

Cl1ClnCl\乙乙乙

2,2

=〃2〃।2(〃22),当及=1时,。1=1适合此式,所以"?/I।2•故选D.

7.(2024•河南信阳模拟)在数列{斯}中,0=1,向量〃=(man),5=(〃〃+「n+1),且。_1_万,

贝I〃100=()

100100

A.99—99

C.100D.-100

答案D

解析因为a=(n,斯)"=(即+1,n+1),且a±b,所以nan+i+(n+l)an=Q,所以白乜=一"二,

Cln"

所以资=—;,祟=—*…,署=—端.以上各式左右分别相乘,得詈=—100,因为ai=l,

a\1〃22〃99vv41

所以moo=-100.故选D.

f(3—〃)Yi—2',

8.已知数列{斯}满足斯=<T且{斯}是递增数列,则实数〃的取值范围

\an5,n>6’

「16°

B.不13

C.(1,3)D.(2,3)

答案D

3~a>Q,a<3,

解析若{为}是递增数列,则<,即《解得2<〃<3,即实数〃的取值

次〉6(3-〃)一2,

范围是(2,3).故选D.

二、多项选择题

9.下列数列是递增数列的是()

A.{1+3〃}B.{3"-2"+2}

C.{T-n}D.{(-3D

答案AC

解析令°"=1+3",则an+i—a”=l+3(w+l)—(1+3n)=3>0,是递增数列,A符合题意;

令斯=3"-2"+2,则41=—5,02=—7,B不符合题意;令斯=2"—",则斯+1—斯=2"+1—2"

-1=2«-1>0,C符合题意;令诙=(一3)",则ai=—3,的=-27,D不符合题意.故选AC.

10.(2024.江苏淮安一中质检)已知数列{“”}满足ai=-斯+i=l一€N*),记数列{0”}

的前n项和为S„,则()

2

A.。3=,

R

口•)s3〃+3—q一3$

C.519=19

D.an-1anan+1=~1(n2,〃€N*)

答案ABD

解析由。i=—不,斯+1=1—7,得〃2=1—7=3,43=1—77=5,故A正确;又。4=1一二=

zan〃23的

—3=。1,所以数列{〃〃}是以3为周期的周期数列,所以S3n+3—s3n=a3n+1+a^2+^3n+3=a\

1919

+〃2+〃3=不,故B正确;Si9=(〃l+〃2+〃3)+(〃4+〃5+〃6)+…+(。16+。17+〃18)+。19=%~、6

-1

卷,故C错误;因为恁=114ZW-1~1〃〃一1

5三2),an+i=l——=l

斯-1斯-1an-\—\an-\—V

a-\—\—1

所以〃八-1斯斯+i—斯-1n1(〃22),故D正确.故选ABD.

。八-111

三、填空题

11.在数列{〃“}中,〃1=1,a2=3,诙=〃〃—1+」一(几>3),则〃5=.

斯—2

答案fl

解析因为6Z1=1,。2=3,诙=斯—1+'一("23),所以〃3=。2+'=4,〃4=的+'=4+4=",

an—2"1420n

,113,155

“5=以+鬲=§+4=适.

12.(2024•湖北荆州中学月考)%为数列{斯}的前〃项和,Mlog2(5„+l)=n+l,则数列{斯}

的通项公式为

(3,〃=1,

答案a=

n[2n,g2

解析由log2(S〃+l)=〃+l,得&+1=2〃+1,当〃=1时,ai=Si=3;当〃22时,an=Sn—

3,n=l‘

S〃—1=2",显然当〃=1时,不满足上式.所以数列{为}的通项公式为斯

2n,〃》2.

13.(2024・四川绵阳中学质检)已知数列{斯}满足勾=28,""'「=2,则与的最小值为

宏安48

口本5

a2828

解析由斯+L如=2〃,0=28,可得斯=层一〃+28,••噂=〃+"—1,设危)=1+工,可

知於)在(0,2币)上单调递减,在(2中,+◎上单调递增,又“WN*,且全=攀聋=学,•肃

的最小值为4学8

14.在数列{诙}中,。1=1,斯+3=1,则10g5g+10g5Q2+…+log5〃2023=.

答案0

解析因为如斯+3=1,所以斯+3斯+6=1,所以斯+6=斯,所以{斯}是周期为6的周期数列,

所以10g5Ql+10g5"2+…+Iog542023=log53142…。2023)=log5[(〃l42…。6产7,。1],又因为。1〃4=。2〃5

=的。6=1,所以〃1〃2…〃6=1,所以原式=log5(1337xl)=log51=0.

四、解答题

21

15.记S〃为数列{斯}的前〃项和,仇为数列{S〃}的前〃项积,已知三+7=2.

(1)求数列{d}的通项公式;

(2)求数列{斯}的通项公式.

解⑴将(心2)代入春+:=2,得华二+:=2(心2),整理得—制(心2).

Dn-1加OnZ

又当〃=1时,可得02+齐12,即12+齐12,得历奇3,所以数列{6“}是以,3为首项,方1为公差

的等差数列,

311

所以与=/+(〃-1)行=]"+1.

(2)由(1)得瓦,=3〃+1,将其代入]十3=2,得&=旺

,〃+2n-\-11

当"22时,a=Sn-Sn-l=I——~/I1X,

nn-rvnn(〃十1)

3

又当〃=1时,41=S1=Z,不满足上式,

所以斯=1]

-—(°1、、〃22、n€N*.

In(〃十1)

B级素养提升练

16.(多选)若数列{斯}满足:对任意正整数几,{斯+1—。〃}为递减数列,则称数列{斯}为“差递

减数列”.给出下列数列{斯}5€N*),其中是“差递减数歹「的是()

A.an=3nB.斯=层+1

C.D.斯=ln几।]

答案CD

解析对于A,若斯=3小则斯+i—斯=3(〃+1)—3〃=3,所以{斯+1-斯}不是递减数列,故

A不符合题意;对于B,若〃八="+1,则诙+1—斯=(〃+1)2—/=2〃+1,所以{斯+1—是

递增数列,故B不符合题意;对于C,若即=3,则+1—%=--6扁+调

vin~\i

所以{斯+1—斯}是递减数列,故C符合题意;对于D,若斯=ln行丁则斯+1—斯=lnI短

〃+1〃+1

n+2n由函数y=ln+oo)上单调递

减,所以{为+1—斯}是递减数列,故D符合题意.故选CD.

17.(多选)(2023•南京模拟)对于数列{④},若存在数列{b}满足儿=斯一:(w€N*),则称数列

{勿}是{诙}的“倒差数列下列关于“倒差数列''的描述中,正确的是()

A.若数列{斯}是递增数列,则其“倒差数列”不一定是递增数列

B.若&=3〃一1,则其“倒差数列”有最大值

C.若斯=3〃-1,则其“倒差数列”有最小值

D.若诙=1—(—;)”,则其“倒差数列”有最大值

答案ACD

l

解析若数列{斯}是递增数列,则bn-bn-i=an—~~-an-i-\-~^~=(an-an-i)(l~<~~~),虽

斯an-l\ClnCln-17

然有an>an-i,但当1+--—<0时,bn<bn-\,因此{为}不一定是递增数列,A正确;an=

3w—1,则6.=3〃-1—京、,易知论”}是递增数列,无最大值,有最小值为乩,B错误,C

=:函数y=x—:在(0,+(»)上单调递

正确;若如=1,则bn1—

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论