版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
高中数学精编资源武强中学2022-2023学年度下学期期末考试高二数学试题一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合A={x|x2–4≤0},B={x|2x+a≤0},且A∩B={x|–2≤x≤1},则a=()A.–4 B.–2 C.2 D.4【答案】B【解析】【分析】由题意首先求得集合A,B,然后结合交集的结果得到关于a的方程,求解方程即可确定实数a的值.【详解】求解二次不等式可得:,求解一次不等式可得:.由于,故:,解得:.故选:B.【点睛】本题主要考查交集的运算,不等式的解法等知识,意在考查学生的转化能力和计算求解能力.2.不等式:成立的一个必要不充分条件是()A B.C. D.【答案】A【解析】【分析】求出不等式的解集,再借助集合的包含关系及必要不充分条件的定义判断作答.【详解】解不等式,得,对于A,真包含于,A;对于B,,B不是;对于C,真包含于,C不是;对于D,与互不包含,D不.故选:A3已知,则A. B. C. D.【答案】B【解析】【分析】运用中间量比较,运用中间量比较【详解】则.故选B.【点睛】本题考查指数和对数大小的比较,渗透了直观想象和数学运算素养.采取中间变量法,利用转化与化归思想解题.4.设函数,A.3 B.6 C.9 D.12【答案】C【解析】【详解】.故选C.5.函数在图像大致为A. B. C. D.【答案】B【解析】【分析】由分子、分母的奇偶性,易于确定函数为奇函数,由的近似值即可得出结果.【详解】设,则,所以是奇函数,图象关于原点成中心对称,排除选项C.又排除选项D;,排除选项A,故选B.【点睛】本题通过判断函数的奇偶性,缩小考察范围,通过计算特殊函数值,最后做出选择.本题较易,注重了基础知识、基本计算能力的考查.6.已知函数的定义域为,则函数的定义域()A. B.C. D.【答案】A【解析】【分析】根据抽象函数和具体函数的定义域可得出关于的不等式组,由此可解得函数的定义域.【详解】因为函数的定义域为,对于函数,则有,解得或.因此,函数的定义域为.故选:A.7.已知函数,且关于的方程有两个实根,则实数的取值范围为()A. B. C. D.【答案】A【解析】【分析】当时,,当时,,由题意可得,函数与直线有两个交点,数形结合求得实数的范围.【详解】当时,,当时,.所以,由图象可知当要使方程有两个实根,即函数与直线有两个交点,所以,由图象可知,故选:A.【点睛】本题主要考查函数的零点与方程的根的关系,体现了数形结合的数学思想,属于基础题.8.若,则()A. B. C. D.【答案】B【解析】【分析】设,利用作差法结合的单调性即可得到答案.【详解】设,则为增函数,因为所以,所以,所以.,当时,,此时,有当时,,此时,有,所以C、D错误.故选:B.【点晴】本题主要考查函数与方程的综合应用,涉及到构造函数,利用函数的单调性比较大小,是一道中档题.二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.下列四组函数中,不表示同一函数的一组是()A.B.C.D.【答案】ACD【解析】【分析】根据函数的定义域、值域、对应关系等知识确定正确答案.【详解】A.,这两个函数的定义域不相同,所以不表示同一函数.B.,且定义域相同,两个函数表示同一函数.C.对于,故,所以的定义域是,而的定义域是,所以不表示同一函数.D.的定义域是,的定义域是,所以不表示同一函数.故选:ACD10.下列叙述中正确的是()A.B.若,则C.已知,则“”是“”的必要不充分条件D.命题“,”的否定是“,”【答案】ABC【解析】【分析】根据自然数集的定义判断A,根据交集、并集的定义判断B,根据充分条件、必要条件的定义判断C,根据全称量词命题的否定判断D;【详解】解:对于A:因为,所以且,故A正确;对于B:根据,所以且,所以,故B正确;对于C:由,即,即,即,当时,,,,所以,即,故必要性成立,由不一定得到,如时也成立,故“”是“”的必要不充分条件,故C正确;对于D:命题“,”的否定是“,”,故D错误;故选:ABC11.已知a>0,b>0,且a+b=1,则()A. B.C. D.【答案】ABD【解析】【分析】根据,结合基本不等式及二次函数知识进行求解.【详解】对于A,,当且仅当时,等号成立,故A正确;对于B,,所以,故B正确;对于C,,当且仅当时,等号成立,故C不正确;对于D,因为,所以,当且仅当时,等号成立,故D正确;故选:ABD【点睛】本题主要考查不等式的性质,综合了基本不等式,指数函数及对数函数的单调性,侧重考查数学运算的核心素养.12.已知是定义在上的偶函数,且,若当时,,则下列结论正确的是()A.当时,B.的图像关于点对称C.D.函数有3个零点【答案】CD【解析】【分析】根据函数的奇偶性和周期性判定选项A和C正确,对于选项B,先假设成立,从而得到,再利用函数性质可得出结论不成立,进而判断B选项错误,结合图像可得选项D正确,【详解】已知是定义在上的偶函数,且,所以,即该函数周期为4,选项A,因为时,,当时,,,所以A选项错误;选项B,假设的图像关于点对称,则,又因,与矛盾,所以选项B错误;选项C,因为,所以C选项正确;选项D,如图作出函数的图像,由图即可得到,函数有个零点,所以D选项正确.故选:CD.三、填空题:本题共4小题,每小题5分,共20分13.已知函数是偶函数,则_________.【答案】【解析】【分析】根据偶函数的性质进行判定求解.【详解】因为函数是偶函数,且定义域为,所以,恒成立,.故答案为:2.14.设,,若,则实数组成的集合_____.【答案】【解析】【分析】先求出A的元素,再由B⊆A,分和B≠φ求出a值即可.【详解】∵A={x|x2﹣8x+15=0},∴A={3,5}又∵B={x|ax﹣1=0},∴①时,a=0,显然B⊆A②时,B={},由于B⊆A∴∴故答案为{}【点睛】本题主要考查由集合间基本关系求参数值或范围的问题,属于基础题.15.已知,则的解析式为_________.【答案】【解析】【分析】利用换元法设t2(t≥2),则t﹣2,代入求出即可.【详解】设t2(t≥2),则t﹣2,即x=(t﹣2)2,∴f(t)=(t﹣2)2+4(t﹣2)=t2﹣4,∴f(x)=x2﹣4(x≥2).【点睛】本题考查了求函数的解析式问题,换元法是常用方法之一,是基础题.16.已知函数,若函数恰有个不同的零点,则的取值范围是______.【答案】【解析】【分析】由题意可知,对任意的,,且为函数的一个零点,构造函数,,可知,函数与的图象有个交点,分和两种情况讨论,数形结合可求得实数的取值范围.【详解】由题意可知,对任意的,,且为函数的一个零点,令,,则函数与的图象有个交点.当时,函数的零点为,如下图所示:此时,函数与的图象有个交点,合乎题意;当时,函数的零点为,则函数与在轴左侧的图象没有交点,所以,函数与在轴右侧的图象必有个交点,则直线与有两个交点,联立,可得,则方程在上有两个不等的实根,可得,解得.综上所述,实数的取值范围是.故答案为:.【点睛】方法点睛:判定函数的零点个数的常用方法:(1)直接法:直接求解函数对应方程的根,得到方程的根,即可得出结果;(2)数形结合法:先令,将函数的零点个数,转化为对应方程的根,进而转化为两个函数图象的交点个数,结合图象,即可得出结果.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.已知指数函数(且)经过点.(1)求的解析式及的值;(2)若,求x的取值范围.【答案】(1),(2)【解析】【分析】(1)将点代入到,解得a的值,即可求出解析式,由此可求出的值;(2)根据指数函数为增函数,转化为不等式,解之即可.【小问1详解】因为(且)经过点,所以,所以,所以,所以;【小问2详解】因为,即,又在R上为增函数,所以,∴x的取值范围为:.18.已知全集,集合,.(1)若,求;(2)若,求实数的取值范围.【答案】(1)(2)【解析】【分析】(1)先确定集合的元素,然后按集合运算法则计算;(2)则有,然后分和讨论。【详解】解:(1)若,则,则;则;(2)若,则,①若,即,得,此时满足条件,②当,则满足,得,综上.【点睛】本题考查集合的运算,考查集合间的包含关系。在集合包含关系中要注意空集是任何集合的子集,因此要分类讨论。19.已知,为常数,(1)若是的充要条件,求的值;(2)若是的必要不充分条件,求的范围.【答案】(1);(2)【解析】【分析】(1)化简得,,是的充要条件则,即可列式求解;(2),是的必要不充分条件,则真包含于,即可列式求解【小问1详解】由得,由得,故若是的充要条件,则;【小问2详解】,若是的必要不充分条件,即真包含于,则有或,即或,故的范围为20.已知是定义在上的偶函数,且时,.(1)求;(2)求函数的解析式;(3)若,求实数的取值范围.【答案】(1);(2);(3)或.【解析】【分析】(1)根据偶函数定义及时的解析式,即可求得的值.(2)令,结合偶函数定义可求得的解析式,进而写出整个定义域内的解析式.(3)根据函数单调性及,解关于的不等式即可得的取值范围.【详解】(1)∵是定义在R上的偶函数,时,,∴;(2)令,则,∴时,,则.(3)∵在上为增函数,∴在上为减函数∵∴,∴或【点睛】本题考查了函数奇偶性的定义,根据奇偶性求函数解析式,根据单调性求参数取值范围,属于基础题.21.设函数f(x)是增函数,对于任意x,y∈R都有f(x+y)=f(x)+f(y).(1)求f(0);(2)证明f(x)是奇函数;(3)解不等式f(x2)—f(x)>f(3x).【答案】(1)0;(2)见解析;(3){x|x<0或x>5}【解析】【详解】试题分析:(1)利用已知条件通过x=y=0,直接求f(0);(2)通过函数的奇偶性的定义,直接证明f(x)是奇函数;(3)利用已知条件转化不等式.通过函数的单调性直接求解不等的解集即可.试题解析:(1)令,得,∴定义域关于原点对称,得,∴∴是奇函数,即又由已知得:由函数是增函数,不等式转化为∴不等式的解集{x|x<0或x>5}.考点:抽象函数及其应用;函数单调性的性质;函数奇偶性的判断;其他不等式的解法.【方法点睛】解决抽象函数问题常用方法:1.换元法:换元法包括显性换元法和隐性换元法,它是解答抽象函数问题的基本方法;2.方程组法:运用方程组通过消参、消元的途径也可以解决有关抽象函数的问题;3.待定系数法:如果抽象函数的类型是确定的,则可用待定系数法来解答有关抽象函数的问题;4.赋值法:有些抽象函数的性质是用条件恒等式给出的,可通过赋特殊值法使问题得以解决;5.转化法:通过变量代换等数学手段将抽象函数具有的性质与函数的单调性等定义式建立联系,为问题的解决带来极大的方便;6.递推法:对于定义在正整数集N*上的抽象函数,用递推法来探究,如果给出的关系式具有递推性,也常用递推法来求解;7.模型法:模型法是指通过对题目的特征进行观察、分析、类比和联想,寻找具体的函数模型,再由具体函数模型的图象和性质来指导我们解决抽象函数问题的方法;应掌握下面常见的特
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 人事经理下年度工作计划范文
- 学校除四害工作计划报告 除四害工作计划
- 2024年社区部学期计划书计划书范文
- 交运部工作展开计划
- 2024至2024学年度第二学期数学教学计划
- 辽东学院《大学英语四》2022-2023学年第一学期期末试卷
- 丽水学院《数据库原理及应用》2021-2022学年第一学期期末试卷
- 重症急性呼吸综合征的临床特征
- 兰州城市学院《学习心理辅导》2022-2023学年第一学期期末试卷
- 2025年中考道德与法治一轮教材复习-七年级下册-第三单元 在集体中成长
- 2023年江苏省环保集团有限公司校园招聘笔试题库及答案解析
- 绘画心理测试与治疗课件
- 操作规程评审
- 水泥基自流平地面施工方案
- 贫困户贷款五万申请书
- (精选word)三对三篮球比赛记录表
- 啊那亚12年整体策略
- 光伏电站项目监理旁站方案
- 云和雾教案及反思
- 希望小学资助项目规划设计书 - 四川省青少年发展基金会
- 风电光伏工程项目调试管理办法
评论
0/150
提交评论