华中农业大学《计算机视觉》2022-2023学年第一学期期末试卷_第1页
华中农业大学《计算机视觉》2022-2023学年第一学期期末试卷_第2页
华中农业大学《计算机视觉》2022-2023学年第一学期期末试卷_第3页
华中农业大学《计算机视觉》2022-2023学年第一学期期末试卷_第4页
华中农业大学《计算机视觉》2022-2023学年第一学期期末试卷_第5页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第2页,共2页华中农业大学

《计算机视觉》2022-2023学年第一学期期末试卷题号一二三四总分得分一、单选题(本大题共15个小题,每小题1分,共15分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、在图像去噪中,BM3D(Block-Matchingand3DFiltering)算法的优势在于()A.去噪效果好B.保持图像细节C.计算效率高D.以上都是2、计算机视觉在智能零售中的应用可以改善购物体验和提高运营效率。假设一个超市需要通过计算机视觉实现自动结账和库存管理。以下关于计算机视觉在智能零售中的描述,哪一项是不准确的?()A.可以通过商品识别技术自动识别顾客购买的商品,实现快速结账B.能够实时监测货架上商品的库存水平,及时提醒补货C.计算机视觉系统能够准确识别所有商品的包装和标签,不受商品摆放方式和遮挡的影响D.可以分析顾客在店内的行为和偏好,为营销策略提供数据支持3、计算机视觉在工业检测中的应用可以提高产品质量和生产效率。假设要检测生产线上的零件是否存在缺陷,以下关于工业检测中的计算机视觉应用的描述,哪一项是不正确的?()A.可以使用机器视觉系统对零件进行实时检测,快速发现缺陷B.深度学习模型能够自动学习正常零件和缺陷零件的特征差异,实现准确的缺陷检测C.工业检测中的计算机视觉系统需要具备高度的准确性和稳定性,能够适应不同的生产环境D.计算机视觉在工业检测中只能检测外观缺陷,对于零件的内部结构和性能无法进行评估4、在计算机视觉中,目标检测是一项关键任务。假设要开发一个能够在复杂的城市交通场景中准确检测出各种车辆类型的系统,需要考虑车辆的不同尺寸、形状和姿态,以及光照、阴影和遮挡等因素的影响。以下哪种目标检测算法在处理这种复杂场景时具有较好的性能和鲁棒性?()A.R-CNNB.FastR-CNNC.FasterR-CNND.YOLO5、在计算机视觉的车牌识别任务中,假设要从不同角度和光照条件下拍摄的车辆图像中准确识别出车牌号码。以下哪种技术可能有助于提高识别准确率?()A.字符分割和单独识别B.利用深度学习模型进行端到端的识别C.只关注车牌的颜色特征D.随机猜测车牌号码6、在计算机视觉的三维重建任务中,假设要从一系列二维图像重建出物体的三维模型。以下关于相机参数校准的重要性,哪一项是不正确的?()A.准确的相机参数有助于提高三维重建的精度B.相机参数校准可以减少重建过程中的误差累积C.即使相机参数不准确,也能通过后续处理得到精确的三维模型D.不同相机的参数差异会影响三维重建的结果7、在计算机视觉的图像去噪任务中,去除图像中的噪声。假设要处理一张被噪声严重污染的天文图像,以下关于图像去噪方法的描述,哪一项是不正确的?()A.均值滤波和中值滤波等传统方法可以在一定程度上去除噪声,但可能会模糊图像细节B.基于小波变换的方法能够在去除噪声的同时较好地保留图像的边缘和细节C.深度学习方法通过学习噪声和干净图像之间的映射关系,实现有效的去噪D.图像去噪可以完全恢复被噪声破坏的原始图像信息,没有任何损失8、在计算机视觉的图像修复任务中,恢复图像中缺失或损坏的部分。假设要修复一张老照片中缺失的部分,以下关于图像修复方法的描述,正确的是:()A.基于纹理合成的图像修复方法能够完美恢复复杂的结构和细节B.深度学习中的自编码器在图像修复中无法学习到有效的特征表示C.图像修复的结果不受缺失区域的大小和形状的影响D.结合先验知识和上下文信息的深度学习方法可以产生更合理和自然的修复效果9、在计算机视觉的图像去噪任务中,去除图像中的噪声。假设要对一张受到严重噪声污染的图像进行去噪处理,以下关于图像去噪方法的描述,正确的是:()A.均值滤波方法能够在去除噪声的同时很好地保留图像的细节B.中值滤波对椒盐噪声的去除效果不佳C.基于深度学习的图像去噪方法可以自适应地学习噪声模式和图像特征D.图像去噪不会引入任何新的失真或模糊10、计算机视觉中的目标跟踪是指在视频序列中持续跟踪特定的目标。以下关于目标跟踪的叙述,不正确的是()A.目标跟踪可以基于特征匹配、滤波算法或深度学习方法来实现B.目标的外观变化、遮挡和背景干扰等因素会给目标跟踪带来挑战C.目标跟踪在智能监控、人机交互和自动驾驶等领域有着广泛的应用D.目标跟踪算法能够在任何情况下都准确地跟踪目标,不受复杂环境的影响11、计算机视觉中的动作识别是对视频中人物或物体的动作进行分类和识别。以下关于动作识别的描述,不准确的是()A.动作识别需要分析视频中的时空特征来理解动作的模式和类别B.双流卷积网络在动作识别任务中被广泛应用,分别处理空间和时间信息C.动作识别在体育分析、视频监控和智能安防等领域具有重要的应用价值D.动作识别技术已经非常成熟,能够准确识别各种复杂和细微的动作12、在计算机视觉领域中,当需要对监控视频中的行人进行实时检测和跟踪,以实现智能安防系统的功能时,以下哪种方法在处理复杂场景和多目标跟踪方面可能表现更为出色?()A.基于传统图像处理的方法B.基于深度学习的目标检测算法C.基于特征匹配的跟踪算法D.基于光流法的跟踪算法13、在计算机视觉的应用于自动驾驶领域,需要实时检测道路上的交通标志和标线。假设车辆在高速行驶中,以下哪种技术能够快速准确地检测到各种交通标志,并且对光照变化和遮挡具有较强的鲁棒性?()A.基于颜色和形状特征的检测方法B.基于深度学习的检测方法,结合多尺度特征C.基于边缘检测和形态学操作的方法D.基于模板匹配和特征点匹配的方法14、对于视频中的异常检测任务,假设要在一段监控视频中检测出异常事件,如闯入、打斗等。以下哪种方法可能更有助于准确检测异常?()A.建立正常行为模型,对比检测异常B.只关注视频中的显著运动区域C.随机判断视频中的帧是否异常D.不进行异常检测,直接忽略异常事件15、计算机视觉中的图像超分辨率技术用于提高图像的分辨率。假设要将一张低分辨率的图像恢复成高分辨率图像,以下关于图像超分辨率方法的描述,正确的是:()A.基于插值的图像超分辨率方法能够生成清晰逼真的高分辨率图像B.深度学习中的生成对抗网络(GAN)在图像超分辨率任务中无法发挥作用C.图像超分辨率的效果不受原始低分辨率图像的质量和内容的限制D.结合先验知识和深度学习的方法可以改善图像超分辨率的效果二、简答题(本大题共4个小题,共20分)1、(本题5分)解释计算机视觉中的光流计算方法和应用。2、(本题5分)计算机视觉中如何进行模型压缩和加速?3、(本题5分)解释计算机视觉中的光流估计的概念及用途。4、(本题5分)简述图像去噪的常见方法。三、应用题(本大题共5个小题,共25分)1、(本题5分)开发一个能够识别不同种类食肉动物的计算机视觉系统。2、(本题5分)开发一个能够识别不同种类两栖动物的计算机视觉系统。3、(本题5分)通过图像分割技术,将细胞图像中的不同细胞类型进行分离和计数。4、(本题5分)开发一个能够识别不同种类鼬科动物的程序。5、(本题5分)设计一个程序,通过计算机视觉识别不同品牌的投影仪。四、分析题(本大题共4个小题,共40分)1、(本题10分)观察某儿童读物的绘本设计,阐述其如何通过画面和文字讲述故事并吸引儿童读者。2、(本题10分)一款化妆品品牌的广告宣传片以精美的特效和优美的音乐为背景,展示产品的使用效果和品

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论