版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025二轮复习专项训练22随机变量及其分布[考情分析]高考常考内容,考查离散型随机变量的分布列、均值和方差,以及利用分布列、均值、方差进行决策或分析,多与概率结合考查综合题型,试题阅读量大,常以解答题的形式出现,难度中档偏上.【练前疑难讲解】一、分布列的性质及应用1.离散型随机变量X的分布列为Xx1x2…xnPp1p2…pn离散型随机变量X的分布列具有两个性质:(1)pi≥0,i=1,2,…,n;(2)eq\i\su(i=1,n,p)i=1(i=1,2,3,…,n).2.E(X)=x1p1+x2p2+…+xnpn=eq\i\su(i=1,n,x)ipi;D(X)=(x1-E(X))2p1+(x2-E(X))2p2+…+(xn-E(X))2pn=eq\i\su(i=1,n,)(xi-E(X))2pi.3.均值、方差的性质(1)E(aX+b)=aE(X)+b,D(aX+b)=a2D(X).(2)X~B(n,p),则E(X)=np,D(X)=np(1-p).(3)X服从两点分布,则E(X)=p,D(X)=p(1-p).二、随机变量的分布列1.n重伯努利试验与二项分布X~B(n,p),P(X=k)=Ceq\o\al(k,n)pk(1-p)n-k,k=0,1,2,…,n.2.超几何分布一般地,假设一批产品共有N件,其中有M件次品.从N件产品中随机抽取n件(不放回),用X表示抽取的n件产品中的次品数,则X的分布列为P(X=k)=eq\f(C\o\al(k,M)C\o\al(n-k,N-M),C\o\al(n,N)),k=m,m+1,m+2,…,r.其中n,N,M∈N*,M≤N,n≤N,m=max{0,n-N+M},r=min{n,M}.三、正态分布正态曲线的特点(1)曲线位于x轴上方,与x轴不相交.(2)曲线是单峰的,它关于直线x=μ对称,曲线在x=μ处达到峰值eq\f(1,σ\r(2π)).(3)曲线与x轴之间的区域的面积总为1.(4)当σ一定时,曲线的位置由μ确定,曲线随着μ的变化而沿x轴平移.(5)当μ一定时,曲线的形状由σ确定.σ越小,曲线越“瘦高”,表示总体的分布越集中;σ越大,曲线越“矮胖”,表示总体的分布越分散.一、单选题1.(23-24高三上·山东临沂·开学考试)一个不透明的袋子中装有3个黑球,n个白球,这些球除颜色外大小、质地完全相同,从中任意取出3个球,已知取出2个黑球,1个白球的概率为,设X为取出白球的个数,则(
)A. B. C.1 D.22.(22-23高二下·黑龙江哈尔滨·期末)现实世界中的很多随机变量遵循正态分布.例如反复测量某一个物理量,其测量误差通常被认为服从正态分布.若某物理量做次测量,最后结果的误差,要控制的概率不大于0.0027,至少要测量的次数为(
)[参考数据:]A.141 B.128 C.288 D.512二、多选题3.(2024·吉林·模拟预测)从含有2件次品的100件产品中,任意抽出3件,则(
)A.抽出的产品中恰好有1件是次品的抽法有种B.抽出的产品中至多有1件是次品的概率为C.抽出的产品中至少有件是次品的概率为D.抽出的产品中次品数的数学期望为4.(2024·海南·模拟预测)某电子展厅为了吸引流量,举办了一场电子竞技比赛,甲、乙两人入围决赛,决赛采用局胜的赛制,其中,即先赢局者获得最终冠军,比赛结束.已知甲每局比赛获胜的概率为,且各局比赛结果相互独立,则(
)A.若,,则甲最终获胜的概率为B.若,,记决赛进行了局,则C.若,,记决赛进行了局,则D.若比时对甲更有利,则三、填空题5.(2023·山东·模拟预测)已知随机变量,其中,随机变量的分布列为012表中,则的最大值为.我们可以用来刻画与的相似程度,则当,且取最大值时,.6.(2024·全国·模拟预测)已知4件产品中有2件次品,现逐个不放回检测,直至能确定所有次品为止,记检测次数为,则.四、解答题7.(2023·全国·高考真题)一项试验旨在研究臭氧效应.实验方案如下:选40只小白鼠,随机地将其中20只分配到实验组,另外20只分配到对照组,实验组的小白鼠饲养在高浓度臭氧环境,对照组的小白鼠饲养在正常环境,一段时间后统计每只小白鼠体重的增加量(单位:g).(1)设表示指定的两只小白鼠中分配到对照组的只数,求的分布列和数学期望;(2)实验结果如下:对照组的小白鼠体重的增加量从小到大排序为:15.2
18.8
20.2
21.3
22.5
23.2
25.8
26.5
27.5
30.132.6
34.3
34.8
35.6
35.6
35.8
36.2
37.3
40.5
43.2实验组的小白鼠体重的增加量从小到大排序为:7.8
9.2
11.4
12.4
13.2
15.5
16.5
18.0
18.8
19.219.8
20.2
21.6
22.8
23.6
23.9
25.1
28.2
32.3
36.5(i)求40只小鼠体重的增加量的中位数m,再分别统计两样本中小于m与不小于的数据的个数,完成如下列联表:对照组实验组(ii)根据(i)中的列联表,能否有95%的把握认为小白鼠在高浓度臭氧环境中与正常环境中体重的增加量有差异.附:0.1000.0500.0102.7063.8416.6358.(2024·江苏·一模)已知某种机器的电源电压U(单位:V)服从正态分布.其电压通常有3种状态:①不超过200V;②在200V~240V之间③超过240V.在上述三种状态下,该机器生产的零件为不合格品的概率分别为0.15,0.05,0.2.(1)求该机器生产的零件为不合格品的概率;(2)从该机器生产的零件中随机抽取n()件,记其中恰有2件不合格品的概率为,求取得最大值时n的值.附:若,取,.【基础保分训练】一、单选题1.(2021·浙江温州·二模)多项选择题给出的四个选项中会有多个选项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得3分.若选项中有i(其中)个选项符合题目要求,随机作答该题时(至少选择一个选项)所得的分数为随机变量(其中),则有(
)A. B.C. D.2.(23-24高二下·吉林长春·阶段练习)2024年“与辉同行”直播间开播,董宇辉领衔7位主播从“心”出发,其中男性5人,女性3人,现需排班晚8:00黄金档,随机抽取两人,则男生人数的期望为(
)A. B. C. D.3.(2024·湖南长沙·模拟预测)从两名同学中挑出一名代表班级参加射击比赛,根据以往的成绩记录,甲、乙两名同学击中目标靶的环数和的分布列如下表一和下表二所示;表一6789100.070.220.380.300.03表二6789100.090.240.320.280.07概率分布条形图如下图三和图四所示:则以下对这两名同学的射击水平的评价,正确的是(
)A. B. C. D.4.(2024·安徽蚌埠·模拟预测)在一组样本数据中,1,2,3,4出现的频率分别为,且,则下面四种情形中,对应样本的标准差最小的一组是(
)A. B.C. D.5.(2024·四川绵阳·模拟预测)下列命题中,真命题的是(
)A.若回归方程,则变量与正相关B.线性回归分析中相关指数用来刻画回归的效果,若值越小,则模型的拟合效果越好C.若样本数据的方差为2,则数据的标准差为4D.一个人连续射击三次,若事件“至少击中两次”的概率为0.7,则事件“至多击中一次”的概率为0.36.(23-24高三上·浙江杭州·期末)已知随机变量,分别满足二项分布,,则“”是“”的(
)A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件7.(2024·辽宁辽阳·一模)辽宁的盘锦大米以粒粒饱满、口感香糯而著称.已知某超市销售的盘锦袋装大米的质量(单位:)服从正态分布,且,若从该超市中随机选取60袋盘锦大米,则质量在的盘锦大米的袋数的方差为(
)A.14.4 B.9.6 C.24 D.488.(2024·江苏·一模)青少年的身高一直是家长和社会关注的重点,它不仅关乎个体成长,也是社会健康素养发展水平的体现.某市教育部门为了解本市高三学生的身高状况,从本市全体高三学生中随机抽查了1200人,经统计后发现样本的身高(单位:)近似服从正态分布,且身高在到之间的人数占样本量的,则样本中身高不低于的约有(
)A.150人 B.300人 C.600人 D.900人二、多选题9.(2024·安徽阜阳·模拟预测)设离散型随机变量的分布列如表,若离散型随机变量满足,则(
)012340.10.40.20.2A. B.,C., D.,10.(23-24高二下·山西晋城·阶段练习)已知随机变量,则(
)A. B.C. D.11.(2023·浙江·三模)下列说法中正确的是(
)A.某射击运动员在一次训练中10次射击成绩(单位:环)如下:6,5,7,9,6,8,9,9,7,5,这组数据的第70百分位数为8B.若随机变量,且,则C.若随机变量,且,则D.对一组样本数据进行分析,由此得到的线性回归方程为:,至少有一个数据点在回归直线上三、填空题12.(2022·天津南开·二模)甲罐中有3个红球、2个黑球,乙罐中有2个红球、2个黑球.①先从甲罐中随机取出一球放入乙罐,以表示事件“由甲罐取出的球是红球”,再从乙罐中随机取出一球,以表示事件“由乙罐取出的球是红球”,则;②从甲、乙两罐中分别随机各取出一球,则取到黑球的个数的数学期望为.13.(2024·全国·模拟预测)随机变量的分布列如下:012若,则.14.(21-22高二下·北京朝阳·期中)甲、乙两人在每次猜谜活动中各猜一个谜语,若一方猜对且另一方猜错,则猜对的一方获胜,否则本次平局.已知每次活动中,甲、乙猜对的概率分别为和,且每次活动中甲、乙猜对与否互不影响,各次活动也互不影响.随机变量表示在3次活动中甲获胜的次数,则;.【能力提升训练】一、单选题1.(2024·河北邢台·二模)已知在的二项展开式中,第6项为常数项,若在展开式中任取3项,其中有理项的个数为,则=(
)A. B. C. D.2.(23-24高二下·江苏南通·阶段练习)下列结论正确的是(
)A.已知一组样本数据,,…,(),现有一组新的数据,,…,,,则与原样本数据相比,新的数据平均数不变,方差变大B.已知具有线性相关关系的变量x,y,其线性回归方程为,若样本点的中心为,则实数m的值是4C.50名学生在一模考试中的数学成绩,已知,则的人数为20人D.已知随机变量,若,则3.(2021·辽宁沈阳·模拟预测)已知随机变量,且,则的最小值为(
)A. B. C. D.二、多选题4.(2024·山东济南·三模)某同学投篮两次,第一次命中率为.若第一次命中,则第二次命中率为;若第一次未命中,则第二次命中率为.记为第i次命中,X为命中次数,则(
)A. B. C. D.5.(2024·辽宁沈阳·三模)下列说法正确的是(
)A.连续抛掷一枚质地均匀的硬币,直至出现正面向上,则停止抛掷.设随机变量表示停止时抛掷的次数,则B.从6名男同学和3名女同学组成的学习小组中,随机选取2人参加某项活动,设随机变量表示所选取的学生中男同学的人数,则C.若随机变量,则D.若随机变量,则当减小,增大时,保持不变6.(2024·广西·模拟预测)下列关于随机变量的说法正确的是(
)A.若服从正态分布,则B.已知随机变量服从二项分布,且,随机变量服从正态分布,若,则C.若服从超几何分布,则期望D.若服从二项分布,则方差三、填空题7.(2024·全国·模拟预测)设随机变量,向量与向量的夹角为锐角的概率是0.5,则的值是.8.(2024·新疆乌鲁木齐·一模)在工业生产中轴承的直径服从,购买者要求直径为,不在这个范围的将被拒绝,要使拒绝的概率控制在之内,则至少为;(若,则)9.(2024·河南开封·二模)袋中有个红球,个黄球,个绿球.现从中任取两个球,记取出的红球数为,若取出的两个球都是红球的概率为,则.四、解答题10.(23-24高三上·河南驻马店·期末)一只蚂蚁位于数轴处,这只蚂蚁每隔一秒钟向左或向右移动一个单位长度,设它向右移动的概率为,向左移动的概率为.(1)已知蚂蚁2秒后所在位置对应的实数为非负数,求2秒后这只蚂蚁在处的概率;(2)记蚂蚁4秒后所在位置对应的实数为,求的分布列与期望.11.(2024·浙江·二模)某工厂生产某种元件,其质量按测试指标划分为:指标大于或等于82为合格品,小于82为次品,现抽取这种元件100件进行检测,检测结果统计如下表:测试指标元件数(件)121836304(1)现从这100件样品中随机抽取2件,若其中一件为合格品,求另一件也为合格品的概率;(2)关于随机变量,俄国数学家切比雪夫提出切比雪夫不等式:若随机变量X具有数学期望,方差,则对任意正数,均有成立.(i)若,证明:;(ii)利用该结论表示即使分布未知,随机变量的取值范围落在期望左右的一定范围内的概率是有界的.若该工厂声称本厂元件合格率为90%,那么根据所给样本数据,请结合“切比雪夫不等式”说明该工厂所提供的合格率是否可信?(注:当随机事件A发生的概率小于0.05时,可称事件A为小概率事件)12.(23-24高二上·吉林·期末)在心理学研究中,常采用对比试验的方法评价不同心理暗示对人的影响,具体方法如下:将参加试验的志愿者随机分成两组,一组接受甲种心理暗示,另一组接受乙种心理暗示,通过对比这两组志愿者接受心理暗示后的结果来评价两种心
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《搜身带离副本》课件
- (部编版八年级《政治》课件)第三单元检测卷
- 《界面设计规范》课件
- 建筑检测租赁合同
- 宠物食品店租赁合同模板
- 大数据双电源维护手册
- 大型活动临时道路施工合同
- 旅舍通风管道安装协议
- 证券投资会计招聘合同范本
- 防水工程模板施工合同
- 动画制作员(高级工)技能鉴定理论考试题库(含答案)
- 2024年新课标卷高考化学试卷试题真题答案详解(精校打印版)
- 国开电大软件工程形考作业3参考答案
- (完整word版)英语四级单词大全
- 齐鲁文化智慧树知到答案章节测试2023年齐鲁师范学院
- 山东省政府采购评审专家学习检测题库1-200
- 金属(碳钢与不锈钢)培训教材
- 余热电站2215;9MW发电机启动操作过程及注意事项Microsoft Word 文档
- 安全工作总结PPT
- 《条形统计图》课堂实录
- 建设工程招投标流程图(含时间节点)
评论
0/150
提交评论