




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第5讲定点(定直线)问题(新高考专用)目录目录【真题自测】 2【考点突破】 2【考点一】定点(定直线)问题 2【专题精练】 4考情分析:解析几何中的定点问题是高考考查的热点,难度较大,是高考的压轴题,其类型一般为直线过定点与圆过定点等.真题自测真题自测一、解答题1.(2023·全国·高考真题)已知椭圆的离心率是,点在上.(1)求的方程;(2)过点的直线交于两点,直线与轴的交点分别为,证明:线段的中点为定点.2.(2022·全国·高考真题)已知椭圆E的中心为坐标原点,对称轴为x轴、y轴,且过两点.(1)求E的方程;(2)设过点的直线交E于M,N两点,过M且平行于x轴的直线与线段AB交于点T,点H满足.证明:直线HN过定点.考点突破考点突破【考点一】定点(定直线)问题一、单选题1.(2024·江苏苏州·模拟预测)设椭圆的离心率等于,抛物线的焦点是椭圆的一个顶点,A、B分别是椭圆的左右顶点.动点P、Q为椭圆上异于A、B两点,设直线、的斜率分别为,且.则(
)A.的斜率可能不存在,且不为0B.点纵坐标为C.直线的斜率D.直线过定点2.(2023·山东·模拟预测)已知抛物线:,过直线:上的动点可作的两条切线,记切点为,则直线(
)A.斜率为2 B.斜率为 C.恒过点 D.恒过点二、多选题3.(2024·云南昆明·模拟预测)设O为坐标原点,直线l过抛物线C:的焦点F且与C交于A,B两点(点A在第一象限),,l为C的准线,,垂足为M,,则下列说法正确的是(
)A.B.的最小值为C.若,则D.x轴上存在一点N,使为定值4.(2024·安徽安庆·二模)抛物线的焦点为,经过点F且倾斜角为的直线l与抛物线C交于A,B两点,分别过点A、点B作抛物线C的切线,两切线相交于点E,则(
)A.当时,B.面积的最大值为2C.点E在一条定直线上D.设直线倾斜角为,为定值三、解答题5.(2024·浙江杭州·二模)已知是椭圆的左,右顶点,点与椭圆上的点的距离的最小值为1.(1)求点的坐标.(2)过点作直线交椭圆于两点(与不重合),连接,交于点.(ⅰ)证明:点在定直线上;(ⅱ)是否存在点使得,若存在,求出直线的斜率;若不存在,请说明理由.6.(2024·浙江·二模)已知双曲线左右焦点分别为,,点在双曲线上,且点到双曲线两条渐近线的距离乘积为,过分别作两条斜率存在且互相垂直的直线,,已知与双曲线左支交于,两点,与左右两支分别交于,两点.(1)求双曲线的方程;(2)若线段,的中点分别为,,求证:直线恒过定点,并求出该定点坐标.7.(2024·辽宁葫芦岛·一模)已知双曲线G的中心为坐标原点,离心率为,左、右顶点分别为A-4,0,B4,0(1)求的方程;(2)过右焦点的直线l与G的右支交于M,N两点,若直线与交于点.(i)证明:点在定直线上:(ii)若直线与交于点,求证:PF2⊥QF8.(23-24高二上·辽宁大连·期末)已知双曲线,点,经过点M的直线交双曲线C于不同的两点A、B,过点A,B分别作双曲线C的切线,两切线交于点E.(二次曲线在曲线上某点处的切线方程为)(1)求证:点E恒在一条定直线L上;(2)若两直线与L交于点N,,求的值;(3)若点A、B都在双曲线C的右支上,过点A、B分别作直线L的垂线,垂足分别为P、Q,记,,的面积分别为,问:是否存在常数m,使得?若存在,求出m的值;若不存在,请说明理由.规律方法:动线过定点问题的两大类型及解法(1)动直线l过定点问题,解法:设动直线方程(斜率存在)为y=kx+t,由题设条件将t用k表示为t=mk,得y=k(x+m),故动直线过定点(-m,0).(2)动曲线C过定点问题,解法:引入参变量建立曲线C的方程,再根据其对参变量恒成立,令其系数等于零,得出定点.专题精练专题精练一、单选题1.(2024·海南·模拟预测)在平面直角坐标系中,椭圆的左、右顶点分别为,点是椭圆上异于的点,为平面内一点,且满足,过点作直线的垂线与直线交于点,则(
)A.12 B.16 C.24 D.322.(2024·甘肃定西·一模)已知椭圆的离心率为是上任意一点,为坐标原点,到轴的距离为,则(
)A.为定值 B.为定值C.为定值 D.为定值3.(2024·湖北黄石·三模)已知为双曲线上的动点,,,直线:与双曲线的两条渐近线交于,两点(点在第一象限),与在同一条渐近线上,则的最小值为(
)A. B. C.0 D.4.(2024·四川宜宾·模拟预测)已知抛物线,过动点作两条相互垂直的直线,分别与抛物线相切于点,则面积的最小值是(
)A.6 B.9 C.12 D.185.(2024·浙江·模拟预测)设点,,是抛物线上3个不同的点,且,若抛物线上存在点,使得线段总被直线平分,则点的横坐标是(
)A.1 B.2 C.3 D.4二、多选题6.(2024·河北沧州·三模)已知椭圆的上顶点、左顶点为为椭圆上异于点的两个不同点,则下列结论正确的是(
)A.若直线的斜率之和为,则直线恒过定点B.若直线的斜率之积为,则直线恒过定点C.若直线的斜率之和为,则直线恒过定点D.若直线的斜率之积为.则直线恒过定点7.(2023·全国·模拟预测)已知双曲线:的右焦点为F,动点M,N在直线:上,且,线段,分别交C于P,Q两点,过P作的垂线,垂足为.设的面积为,的面积为,则(
)A.的最小值为 B.C.为定值 D.的最小值为8.(2024·广西南宁·一模)已知抛物线的焦点为,过作两条互相垂直的直线,与交于、Q两点,与交于、N两点,的中点为的中点为,则(
)A.当时, B.的最小值为18C.直线过定点 D.的面积的最小值为4三、填空题9.(2024·安徽合肥·三模)已知曲线的方程为,过作直线与曲线分别交于两点.过作曲线的切线,设切线的交点为.则的最小值为.10.(23-24高三上·云南昆明·阶段练习)已知双曲线的左、右焦点分别为,点在的左支上,,,延长交的右支于点,点为双曲线上任意一点(异于两点),则直线与的斜率之积.四、解答题11.(23-24高二上·上海浦东新·期中)如图,D为圆O:上一动点,过点D分别作x轴,y轴的垂线,垂足分别为A,B,连接并延长至点W,使得,点W的轨迹记为曲线.(1)求曲线C的方程;(2)若过点的两条直线,分别交曲线C于M,N两点,且,求证:直线MN过定点;(3)若曲线C交y轴正半轴于点S,直线与曲线C交于不同的两点G,H,直线SH,SG分别交x轴于P,Q两点.请探究:y轴上是否存在点R,使得?若存在,求出点R坐标;若不存在,请说明理由.12.(2024·广东韶关·二模)已知椭圆的离心率为,长轴长为4,是其左、右顶点,是其右焦点.(1)求椭圆的标准方程;(2)设是椭圆上一点,的角平分线与直线交于点.①求点的轨迹方程;②若面积为,求.13.(2024·贵州贵阳·一模)已知双曲线的方程为,虚轴长为2,点在上.(1)求双曲线的方程;(2)过原点的直线与交于两点,已知直线和直线的斜率存在,证明:直线和直线的斜率之积为定值;(3)过点的直线交双曲线于两点,直线与轴的交点分别为,求证:的中点为定点.14.(2023·湖北·二模)已知双曲线C:的离心率为,过点的直线l与C左右两支分别交于M,N两个不同的点(异于顶点).(1)若点P为线段MN的中点,求直线OP与直线MN斜率之积(O为坐标原点);(2)若A,B为双曲线的左右顶点,且,试判断直线AN与直线BM的交点G是否在定直线上,若是,求出该定直线,若不是,请说明理由15.(23-24高二下·四川泸州·阶段练习)已知抛物线的焦点为,为上一点,且.(1)求的方程;(2)过点且斜率存在的直线与交于不
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论