沪科版九年级上册数学期中考试试卷及答案_第1页
沪科版九年级上册数学期中考试试卷及答案_第2页
沪科版九年级上册数学期中考试试卷及答案_第3页
沪科版九年级上册数学期中考试试卷及答案_第4页
沪科版九年级上册数学期中考试试卷及答案_第5页
已阅读5页,还剩24页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

沪科版九年级上册数学期中考试试题一、选择题。(每小题只有一个正确答案)1.若二次函数y=x2+4x-1配方后为y=(x+h)2+k,则h、k的值分别为()A.2,5B.4,-5C.2,-5D.-2,-52.二次函数y=x2+2x-5有A.最大值-5 B.最小值-5 C.最大值-6 D.最小值-63.如图,已知点C是线段AB的黄金分割点,且BC>AC.若S1表示以BC为边的正方形面积,S2表示长为AB、宽为AC的矩形面积,则S1与S2的大小关系为()S1>S2B.S1=S2C.S1<S2D.不能确定4.如图,直线与x轴,y轴分别相交于A,B两点,C为OB上一点,且∠1=∠2,则△ABC的面积为:A.1B.2C.3D.45.如图,中,A、B两个顶点在x轴的上方,点C的坐标是以点C为位似中心,在x轴的下方作的位似图形,并把的边长放大到原来的2倍.设点B的对应点的横坐标是a,则点B的横坐标是()A. B. C. D.6.已知二次函数y=-x2+2bx+c,当x>1时,y的值随x值的增大而减小,则实数b的取值范围是()A.b≥-1 B.b≤-1 C.b≥1 D.b≤17.如图,,射线和互相垂直,点是上的一个动点,点在射线上,,作并截取,连结并延长交射线于点.设,则关于的函数解析式是()A.B.C.D.8.如图,正方形ABCD的顶点B,C在x轴的正半轴上,反比例函数y=(k≠0)在第一象限的图象经过顶点A(m,2)和CD边上的点E(n,),过点E的直线l交x轴于点F,交y轴于点G(0,-2),则点F的坐标是()A.(,0) B.(,0) C.(,0) D.(,0)9.如图,点P是菱形ABCD的对角线AC上的一个动点,过点P垂直于AC的直线交菱形ABCD的边于M、N两点.设AC=2,BD=1,AP=x,△CMN的面积为y,则y关于x的函数图象大致形状是(

)A.B.C.D.10.如图,以点O为支点的杠杆,在A端用竖直向上的拉力将重为G的物体匀速拉起,当杠杆OA水平时,拉力为F;当杠杆被拉至OA1时,拉力为F1,过点B1作B1C⊥OA,过点A1作A1D⊥OA,垂足分别为点C、D.①△OB1C∽△OA1D;②OA•OC=OB•OD;③OC•G=OD•F1;④F=F1.其中正确的说法有()A.1个 B.2个 C.3个 D.4个二、填空题11.抛物线y=ax2+bx+c经过点A(﹣3,0),对称轴是直线x=﹣1,则a+b+c=___.12.如图,点D为△ABC外一点,AD与BC边的交点为E,AE=3,DE=5,BE=4,要使△BDE∽△ACE,且点B,D的对应点为A,C,那么线段CE的长应等于___.13.如图,点是反比例函数图象上任意一点,过点分别作轴,轴的垂线,垂足为,,则四边形的面积为____.14.已知反比例函数的图像经过点,则的值是____________________.15.如图,已知点P(1,2)在反比例函数的图象上,观察图象可知,当x>1时,y的取值范围是______.三、解答题16.已知反比例函数y=的图象与二次函数y=ax+x-1的图象相交于点(2,2)(1)求a和k的值;(2)反比例函数的图象是否经过二次函数图象的顶点,为什么?17.如图,抛物线与x轴交于A,B两点,它们的对称轴与x轴交于点N,过顶点M作ME⊥y轴于点E,连结BE交MN于点F.已知点A的坐标为(﹣1,0).(1)求该抛物线的解析式及顶点M的坐标;(2)求△EMF与△BNF的面积之比.18.已知,如图,在平行四边形ABCD中,E、F分别是边BC、CD上的点,且EF∥BD,AE、AF分别交BD于点G和点H,BD=12,EF=8.求:(1)的值;(2)线段GH的长.19.反比例函数在第一象限的图象如图所示,过点A(1,0)作x轴的垂线,交反比例函数的图象于点M,△AOM的面积为3.(1)求反比例函数的解析式;(2)设点B的坐标为(t,0),其中t>1.若以AB为一边的正方形有一个顶点在反比例函数的图象上,求t的值.20.某商店经过市场调查,整理出某种商品在第x(1≤x≤90)天的售价与销量的相关信息如下表:时间x(天)1≤x<5050≤x≤90售价(元/件)x+4090每天销量(件)200-2x已知该商品的进价为每件30元,设销售该商品的每天利润为y元.(1)求出y与x的函数关系式;(2)问销售该商品第几天时,当天销售利润最大,最大利润是多少?21.某研究所将某种材料加热到1000℃时停止加热,并立即将材料分为A、B两组,采用不同工艺做降温对比实验,设降温开始后经过xmin时,A、B两组材料的温度分别为yA℃、yB℃,yA、yB与x的函数关系式分别为yA=kx+b,yB=(x﹣60)2+m(部分图象如图所示),当x=40时,两组材料的温度相同.(1)分别求yA、yB关于x的函数关系式;(2)当A组材料的温度降至120℃时,B组材料的温度是多少?(3)在0<x<40的什么时刻,两组材料温差最大?22.如图,M为线段AB的中点,AE与BD交于点C,∠DME=∠A=∠B=α,且DM交AC于F,ME交BC于G.(1)写出图中三对相似三角形,并证明其中的一对;(2)连结FG,如果α=45°,AB=,AF=3,求FG的长.23.如图,在△ABC中,AD、BE分别是BC、AC边上的高.求证:△DCE∽△ACB.24.如图1,在△ABC中,∠C=90°,翻折∠C,使点C落在斜边AB上某一点D处,折痕为EF,点E、F分别在边AC、BC上(图2、图3备用).(1)设AC=3,BC=4,当△CEF与△ABC相似时,求AD的长;(2)当点D是AB的中点时,△CEF与△ABC相似吗?请说明理由.参考答案1.C【解析】【分析】利用配方法把二次函数的一般式转化为顶点式,可以求得h、k的值.【详解】解:∵y=x2+4x-1=(x2+4x+4)-4-1=(x+2)2-5,即二次函数y=x2+4x-1配方后为y=(x+2)2-5,

∴h=2,k=-5,

故选:C.【点睛】本题考查了将二次函数的一般式改写为顶点式,熟练掌握配方法是解题关键.2.D【详解】解:y=x2+2x-5的图像为抛物线开口向上.则只有最小值,没有最大值,排除AC.而抛物线顶点对应x值为,则把x=-1代入原函数y=-6.故最小值为-6.考点:二次函数点评:本题难度中等,主要考查学生对二次函数图像抛物线性质分析.代入顶点坐标公式求出最小值即可.3.B【分析】根据黄金分割的定义得到BC2=AC•AB,再利用正方形和矩形的面积公式有S1=BC2,S2=AC•AB,即可得到S1=S2.【详解】解:∵C是线段AB的黄金分割点,且BC>AC,

∴BC2=AC•AB,

∵S1表示以BC为边的正方形面积,S2表示长为AB、宽为AC的矩形面积,

∴S1=BC2,S2=AC•AB,

∴S1=S2.

故选B.【点睛】本题考查了黄金分割的定义:一个点把一条线段分成较长线段和较短线段,并且较长线段是较短线段和整个线段的比例中项,那么就说这个点把这条线段黄金分割,这个点叫这条线段的黄金分割点.4.C【详解】∵直线y=-2x+4与x轴,y轴分别相交于A,B两点∴OA=2,OB=4又∵∠1=∠2∴∠BAO=∠OCA∴△OAC∽△OAB则OC:OA=OA:OB=1:2∴OC=1,BC=3,∴S△ABC=0.5×2×3=3故选C5.D【分析】过点B作轴于E,过点作轴于F,根据位似变换的性质得出的边长放大到原来的2倍,,,,进而得出点B的横坐标.【详解】解:如图,过点B作轴于E,过点作轴于F,点C的坐标是,以点C为位似中心,在x轴的下方作把的边长放大到原来的2倍的位似图形,点B的对应点的横坐标是a,,,,点B的横坐标是:.故选D.【点睛】此题主要考查了位似变换的性质,根据已知得出FO=a,CF=a+1,CE=,是解决问题的关键.6.D【解析】【详解】解:∵抛物线y=-x2+2bx+c的对称轴为直线x=-=b,而a<0,∴当x>b时,y随x的增大而减小,∵当x>1时,y的值随x值的增大而减小,∴b≤1.故选D.【点睛】本题考查二次函数的性质.7.A【分析】过点F作FG⊥BC于点G,利用AAS证出△BDE≌△GEF,从而得出BD=GE,BE=FG=x,然后根据相似三角形的判定定理证出△FCG∽△ACB,列出比例式即可得出结论.【详解】解:过点F作FG⊥BC于点G∵AB⊥BM,,∴∠B=∠EGF=∠DEF=90°∴∠BDE+∠DEB=90°,∠GEF+∠DEB=90°∴∠BDE=∠GEF在△BDE和△GEF中∴△BDE≌△GEF∴BD=GE,BE=FG=x∵∴DB=2x∴GE=2x∴CG=BC-BE-GE=y-3x∵∠FGC=∠B=90°,∠FCG=∠ACB∴△FCG∽△ACB∴即整理,得故选A.【点睛】此题考查的是全等三角形的判定及性质、相似三角形的判定及性质和求函数关系式,掌握全等三角形的判定及性质和相似三角形的判定及性质是解决此题的关键.8.C【详解】试题分析:∵正方形的顶点A(m,2),∴正方形的边长为2,∴BC=2,而点E(n,),∴n=2+m,即E点坐标为(2+m,),∴k=2•m=(2+m),解得m=1,∴E点坐标为(3,),设直线GF的解析式为y=ax+b,把E(3,),G(0,-2)代入得,解得,∴直线GF的解析式为y=x-2,当y=0时,x-2=0,解得x=,∴点F的坐标为(,0).故选C.考点:反比例函数与一次函数的交点问题.9.A【解析】由题意得当0≤x≤1时,y=0.5x2;当1<x≤2时,y=1/2x(2-x)=-0.5x2+1故选A10.D【分析】根据在同一平面内,垂直于同一直线的两直线互相平行判断出B1C∥A1D,然后求出△OB1C∽△OA1D,判断出①正确;根据相似三角形对应边成比例列式求解即可得到②正确;根据杠杆平衡原理:动力×动力臂=阻力×阻力臂列式判断出③正确;求出F的大小不变,判断出④正确.【详解】∵B1C⊥OA,A1D⊥OA,∴B1C∥A1D,∴△OB1C∽△OA1D,故①正确;∵△OB1C∽△OA1D,∴,由旋转的性质得,OB=OB1,OA=OA1,∴OA•OC=OB•OD,故②正确;由杠杆平衡原理,OC•G=OD•F1,故③正确;∴是定值,∴F1的大小不变,∴F=F1,故④正确.综上所述,说法正确的是①②③④.故选D.11.0【解析】试题分析:∵抛物线y=ax2+bx+c经过点A(﹣3,0),对称轴是直线x=﹣1,∴y=ax2+bx+c与x轴的另一交点为(1,0),∴a+b+c=0.考点:二次函数的性质12..【分析】根据对顶角相等得到∠AEC=∠BED,则根据两组对应边的比相等且夹角对应相等的两个三角形相似,当时,△BDE∽△ACE,然后利用比例性质计算CE的长.【详解】解:∵∠AEC=∠BED,∴当时,△BDE∽△ACE,即∴CE=故答案为.【点睛】本题考查了相似三角形的判定:两组对应边的比相等且夹角对应相等的两个三角形相似,此判定方法要合理使用公共角或对顶角.13.3【分析】根据反比例函数的图象上点的坐标性得出|xy|=3,进而得出四边形的面积.【详解】解:如图所示:可得OB×AB=|xy|=|k|=3,则四边形的面积为:3,故答案为:3.【点睛】本题考查了反比例函数(k≠0)系数k的几何意义:从反比例函数(k≠0)图象上任意一点向x轴和y轴作垂线,垂线与坐标轴所围成的矩形面积为|k|.14.﹣12【分析】直接将点代入反比例函数解析式中,解之即可.【详解】依题意,将点代入,得:,解得:=﹣12,故答案为:﹣12.【点睛】本题主要考查反比例函数图象上的点的坐标特征,熟练掌握图象上的坐标与解析式的关系是解答的关键.15.0<y<2【分析】由反比例函数图像的性质可知,反比例函数的图象与x轴没有交点,且题干图形中,反比例函数图像在同一象限内,y随x增大而减小,据此解答即可.【详解】解:反比例函数图像在同一象限内,y随x增大而减小,当x>1时,y<2;再由反比例函数图像的性质可知,y>0,故y的取值范围是0<y<2.故答案为0<y<2.【点睛】本题主要考查了反比例函数图像的性质,注意不要遗漏了y>0.16.(1)a=k=4(2)略【解析】(1)∵二次函数与反比例函数交于点(2,2).∴2=4a+2-1,解之得a=.2=,所以k=4.(2)反比例函数的图像经过二次函数图像的顶点.由(1)知,二次函数和反比例函数的关系式分别是和.∵====∴二次函数图像的顶点坐标是(-2,-2).∵x=-2时,,∴反比例函数图像经过二次函数图像的顶点17.(1),(1,4);(2).【详解】试题分析:(1)直接将(﹣1,0)代入求出即可,再利用配方法求出顶点坐标.(2)利用EM∥BN,则△EMF∽△BNF,进而求出△EMF与△BNE的面积之比.试题解析:解:(1)∵点A在抛物线上,∴,解得:c=3,∴抛物线的解析式为.∵,∴抛物线的顶点M(1,4);(2)∵A(﹣1,0),抛物线的对称轴为直线x=1,∴点B(3,0).∴EM=1,BN=2.∵EM∥BN,∴△EMF∽△BNF.∴.考点:1.抛物线与x轴的交点问题;2.二次函数的性质;3.待定系数法的应用;4.曲线上点的坐标与方程的关系;5.相似三角形的判定和性质.18.(1)DF:AB=1:3,(2)GH=6.【解析】试题分析:(1)根据EF∥BD,则CF:CD=EF:BD,再利用平行四边形的性质即可得出DF:AB的值;(2)利用DF∥AB,则FH:AH=DF:AB=1:3,进而得出GH:EF=AH:AF=3:4,求出GH即可.试题解析:(1)∵EF∥BD,∴CF:CD=EF:BD,∵BD=12,EF=8,∴CF:CD=2:3,∴DF:CD=1:3,∵四边形ABCD是平行四边形,∴AB=CD,∴DF:AB=1:3;(2)∵DF∥AB,∴FH:AH=DF:AB=1:3,∴AH:AF=3:4,∵EF∥BD,∴GH:EF=AH:AF=3:4,∴GH:8=3:4,∴GH=6.考点:1.平行线分线段成比例;2.平行四边形的性质.19.(1)(2)7或3.【详解】试题分析:(1)根据反比例函数k的几何意义得到|k|=3,可得到满足条件的k=6,于是得到反比例函数解析式为y=;(2)分类讨论:当以AB为一边的正方形ABCD的顶点D在反比例函数y=的图象上,则D点与M点重合,即AB=AM,再利用反比例函数图象上点的坐标特征确定M点坐标为(1,6),则AB=AM=6,所以t=1+6=7;当以AB为一边的正方形ABCD的顶点C在反比例函数y=的图象上,根据正方形的性质得AB=BC=t-1,则C点坐标为(t,t-1),然后利用反比例函数图象上点的坐标特征得到t(t-1)=6,再解方程得到满足条件的t的值.试题解析:(1)∵△AOM的面积为3,∴|k|=3,而k>0,∴k=6,∴反比例函数解析式为y=;(2)当以AB为一边的正方形ABCD的顶点D在反比例函数y=的图象上,则D点与M点重合,即AB=AM,把x=1代入y=得y=6,∴M点坐标为(1,6),∴AB=AM=6,∴t=1+6=7;当以AB为一边的正方形ABCD的顶点C在反比例函数y=的图象上,则AB=BC=t-1,∴C点坐标为(t,t-1),∴t(t-1)=6,整理为t2-t-6=0,解得t1=3,t2=-2(舍去),∴t=3,∴以AB为一边的正方形有一个顶点在反比例函数y=的图象上时,t的值为7或3.考点:反比例函数综合题.20.(1)y=;(2)该商品第45天时,当天销售利润最大,最大利润是6050元.【分析】(1)分1≤x<50和50≤x≤90两种情况进行讨论,利润=每件的利润×销售的件数,即可求得函数的解析式;

(2)结合(1)得到的两个解析式,结合二次函数与一次函数的性质分别求得最值,然后两种情况下取最大值即可.【详解】(1)当1≤x<50时,y=(200-2x)(x+40-30)=-2x2+180x+2000;当50≤x≤90时,y=(200-2x)(90-30)=-120x+12000.∴y=(2)当1≤x<50时,二次函数的图象开口下、对称轴为x=45,∴当x=45时,y最大=-2×452+180×45+2000=6050;当50≤x≤90时,一次函数y随x的增大而减小,∴当x=50时,y最大=6000.∴综上所述,该商品第45天时,当天销售利润最大,最大利润是6050元.【点睛】本题考查了二次函数和一次函数的应用,根据函数的增减性确定最值是解题的关键.21.(1)yA=﹣20x+1000;(2)B组材料的温度是164℃;(3)当x=20时,两组材料温差最大为100℃.【解析】试题分析:(1)首先求出yB函数关系式,进而得出交点坐标,即可得出yA函数关系式;(2)首先将y=120代入求出x的值,进而代入yB求出答案;(3)得出yA-yB的函数关系式,进而求出最值即可.试题解析:(1)由题意可得出:yB=(x﹣60)2+m经过(0,1000),则1000=(0﹣60)2+m,解得:m=100,∴yB=(x﹣60)2+100,当x=40时,yB=×(40﹣60)2+100,解得:yB=200,yA=kx+b,经过(0,1000),(40,200),则,解得:,∴yA=﹣20x+1000;(2)当A组材料的温度降至120℃时,120=﹣20x+1000,解得:x=44,当x=44,yB=(44﹣60)2+100=164(℃),∴B组材料的温度是164℃;(3)当0<x<40时,yA﹣yB=﹣20x+1000﹣(x﹣60)2﹣100=﹣x2+10x=﹣(x﹣20)2+100,∴当x=20时,两组材料温差最大为100℃.22.(1)△AMF∽△BGM,△DMG∽△DBM,△EMF∽△EAM(写出两对即可)(2)【分析】(1)根据已知条件,∠DME=∠A=∠B=α,结合∠AFM=∠DME+∠E=∠A+∠E=∠BMG,即可证相似;

(2)根据相似三角形的性质,推出BG的长度,依据锐角三角函数推出AC的长度,即可求出CG、CF的长度,继而推出FG的长度.【详解】(1)证明:∵∠DME=∠A∴∠AFM=∠DME+∠E=∠A+∠E=∠BMG,又∵∠A=∠B∴△AMF∽△BGM.(2)当α=45°时,可得AC⊥BC且AC=BC=4∵M为AB的中点,∴AM=BM=又∵AMF∽△BGM,∴∴∴,∴【点睛】本题考查相似三角形的判定和性质,由相似得出线段比例关系是本题的关键.2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论