版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
甘肃省嘉峪关市重点中学2025届高考适应性考试数学试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.祖暅原理:“幂势既同,则积不容异”.意思是说:两个同高的几何体,如在等高处的截面积恒相等,则体积相等.设、为两个同高的几何体,、的体积不相等,、在等高处的截面积不恒相等.根据祖暅原理可知,是的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件2.设复数满足(为虚数单位),则在复平面内对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限3.已知集合A={x∈N|x2<8x},B={2,3,6},C={2,3,7},则=()A.{2,3,4,5} B.{2,3,4,5,6}C.{1,2,3,4,5,6} D.{1,3,4,5,6,7}4.上世纪末河南出土的以鹤的尺骨(翅骨)制成的“骨笛”(图1),充分展示了我国古代高超的音律艺术及先进的数学水平,也印证了我国古代音律与历法的密切联系.图2为骨笛测量“春(秋)分”,“夏(冬)至”的示意图,图3是某骨笛的部分测量数据(骨笛的弯曲忽略不计),夏至(或冬至)日光(当日正午太阳光线)与春秋分日光(当日正午太阳光线)的夹角等于黄赤交角.由历法理论知,黄赤交角近1万年持续减小,其正切值及对应的年代如下表:黄赤交角正切值0.4390.4440.4500.4550.461年代公元元年公元前2000年公元前4000年公元前6000年公元前8000年根据以上信息,通过计算黄赤交角,可估计该骨笛的大致年代是()A.公元前2000年到公元元年 B.公元前4000年到公元前2000年C.公元前6000年到公元前4000年 D.早于公元前6000年5.已知P是双曲线渐近线上一点,,是双曲线的左、右焦点,,记,PO,的斜率为,k,,若,-2k,成等差数列,则此双曲线的离心率为()A. B. C. D.6.已知正项数列满足:,设,当最小时,的值为()A. B. C. D.7.若集合,,则下列结论正确的是()A. B. C. D.8.我国古代数学家秦九韶在《数书九章》中记述了“三斜求积术”,用现代式子表示即为:在中,角所对的边分别为,则的面积.根据此公式,若,且,则的面积为()A. B. C. D.9.函数在的图象大致为()A. B.C. D.10.设分别是双曲线的左右焦点若双曲线上存在点,使,且,则双曲线的离心率为()A. B.2 C. D.11.已知某超市2018年12个月的收入与支出数据的折线图如图所示:根据该折线图可知,下列说法错误的是()A.该超市2018年的12个月中的7月份的收益最高B.该超市2018年的12个月中的4月份的收益最低C.该超市2018年1-6月份的总收益低于2018年7-12月份的总收益D.该超市2018年7-12月份的总收益比2018年1-6月份的总收益增长了90万元12.已知直线与圆有公共点,则的最大值为()A.4 B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.在平面直角坐标系中,点在单位圆上,设,且.若,则的值为________________.14.若函数在和上均单调递增,则实数的取值范围为________.15.甲、乙两人同时参加公务员考试,甲笔试、面试通过的概率分别为和;乙笔试、面试通过的概率分别为和.若笔试面试都通过才被录取,且甲、乙录取与否相互独立,则该次考试只有一人被录取的概率是__________.16.如图是某几何体的三视图,俯视图中圆的两条半径长为2且互相垂直,则该几何体的体积为________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数.(1)求的极值;(2)若,且,证明:.18.(12分)如图(1)五边形中,,将沿折到的位置,得到四棱锥,如图(2),点为线段的中点,且平面.(1)求证:平面平面;(2)若直线与所成角的正切值为,求直线与平面所成角的正弦值.19.(12分)已知函数.(1)若,求函数的单调区间;(2)若恒成立,求实数的取值范围.20.(12分)如图,在四棱锥中,底面,底面是直角梯形,为侧棱上一点,已知.(Ⅰ)证明:平面平面;(Ⅱ)求二面角的余弦值.21.(12分)已知向量,.(1)求的最小正周期;(2)若的内角的对边分别为,且,求的面积.22.(10分)设函数f(x)=sin(2x-π(I)求f(x)的最小正周期;(II)若α∈(π6,π)且f(
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】
由题意分别判断命题的充分性与必要性,可得答案.【详解】解:由题意,若、的体积不相等,则、在等高处的截面积不恒相等,充分性成立;反之,、在等高处的截面积不恒相等,但、的体积可能相等,例如是一个正放的正四面体,一个倒放的正四面体,必要性不成立,所以是的充分不必要条件,故选:A.【点睛】本题主要考查充分条件、必要条件的判定,意在考查学生的逻辑推理能力.2、A【解析】
由复数的除法运算可整理得到,由此得到对应的点的坐标,从而确定所处象限.【详解】由得:,对应的点的坐标为,位于第一象限.故选:.【点睛】本题考查复数对应的点所在象限的求解,涉及到复数的除法运算,属于基础题.3、C【解析】
根据集合的并集、补集的概念,可得结果.【详解】集合A={x∈N|x2<8x}={x∈N|0<x<8},所以集合A={1,2,3,4,5,6,7}B={2,3,6},C={2,3,7},故={1,4,5,6},所以={1,2,3,4,5,6}.故选:C.【点睛】本题考查的是集合并集,补集的概念,属基础题.4、D【解析】
先理解题意,然后根据题意建立平面几何图形,在利用三角函数的知识计算出冬至日光与春秋分日光的夹角,即黄赤交角,即可得到正确选项.【详解】解:由题意,可设冬至日光与垂直线夹角为,春秋分日光与垂直线夹角为,则即为冬至日光与春秋分日光的夹角,即黄赤交角,将图3近似画出如下平面几何图形:则,,.,估计该骨笛的大致年代早于公元前6000年.故选:.【点睛】本题考查利用三角函数解决实际问题的能力,运用了两角和与差的正切公式,考查了转化思想,数学建模思想,以及数学运算能力,属中档题.5、B【解析】
求得双曲线的一条渐近线方程,设出的坐标,由题意求得,运用直线的斜率公式可得,,,再由等差数列中项性质和离心率公式,计算可得所求值.【详解】设双曲线的一条渐近线方程为,且,由,可得以为圆心,为半径的圆与渐近线交于,可得,可取,则,设,,则,,,由,,成等差数列,可得,化为,即,可得,故选:.【点睛】本题考查双曲线的方程和性质,主要是渐近线方程和离心率,考查方程思想和运算能力,意在考查学生对这些知识的理解掌握水平.6、B【解析】
由得,即,所以得,利用基本不等式求出最小值,得到,再由递推公式求出.【详解】由得,即,,当且仅当时取得最小值,此时.故选:B【点睛】本题主要考查了数列中的最值问题,递推公式的应用,基本不等式求最值,考查了学生的运算求解能力.7、D【解析】
由题意,分析即得解【详解】由题意,故,故选:D【点睛】本题考查了元素和集合,集合和集合之间的关系,考查了学生概念理解,数学运算能力,属于基础题.8、A【解析】
根据,利用正弦定理边化为角得,整理为,根据,得,再由余弦定理得,又,代入公式求解.【详解】由得,即,即,因为,所以,由余弦定理,所以,由的面积公式得故选:A【点睛】本题主要考查正弦定理和余弦定理以及类比推理,还考查了运算求解的能力,属于中档题.9、C【解析】
先根据函数奇偶性排除B,再根据函数极值排除A;结合特殊值即可排除D,即可得解.【详解】函数,则,所以为奇函数,排除B选项;当时,,所以排除A选项;当时,,排除D选项;综上可知,C为正确选项,故选:C.【点睛】本题考查根据函数解析式判断函数图像,注意奇偶性、单调性、极值与特殊值的使用,属于基础题.10、A【解析】
由及双曲线定义得和(用表示),然后由余弦定理得出的齐次等式后可得离心率.【详解】由题意∵,∴由双曲线定义得,从而得,,在中,由余弦定理得,化简得.故选:A.【点睛】本题考查求双曲线的离心率,解题关键是应用双曲线定义用表示出到两焦点的距离,再由余弦定理得出的齐次式.11、D【解析】
用收入减去支出,求得每月收益,然后对选项逐一分析,由此判断出说法错误的选项.【详解】用收入减去支出,求得每月收益(万元),如下表所示:月份123456789101112收益203020103030604030305030所以月收益最高,A选项说法正确;月收益最低,B选项说法正确;月总收益万元,月总收益万元,所以前个月收益低于后六个月收益,C选项说法正确,后个月收益比前个月收益增长万元,所以D选项说法错误.故选D.【点睛】本小题主要考查图表分析,考查收益的计算方法,属于基础题.12、C【解析】
根据表示圆和直线与圆有公共点,得到,再利用二次函数的性质求解.【详解】因为表示圆,所以,解得,因为直线与圆有公共点,所以圆心到直线的距离,即,解得,此时,因为,在递增,所以的最大值.故选:C【点睛】本题主要考查圆的方程,直线与圆的位置关系以及二次函数的性质,还考查了运算求解的能力,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
根据三角函数定义表示出,由同角三角函数关系式结合求得,而,展开后即可由余弦差角公式求得的值.【详解】点在单位圆上,设,由三角函数定义可知,因为,则,所以由同角三角函数关系式可得,所以故答案为:.【点睛】本题考查了三角函数定义,同角三角函数关系式的应用,余弦差角公式的应用,属于中档题.14、【解析】
化简函数,求出在上的单调递增区间,然后根据在和上均单调递增,列出不等式求解即可.【详解】由知,当时,在和上单调递增,在和上均单调递增,,
,
的取值范围为:.
故答案为:.【点睛】本题主要考查了三角函数的图象与性质,关键是根据函数的单调性列出关于m的方程组,属中档题.15、【解析】
分别求得甲、乙被录取的概率,根据独立事件概率公式可求得结果.【详解】甲被录取的概率;乙被录取的概率;只有一人被录取的概率.故答案为:.【点睛】本题考查独立事件概率的求解问题,属于基础题.16、20【解析】
由三视图知该几何体是一个圆柱与一个半球的四分之三的组合,利用球体体积公式、圆柱体积公式计算即可.【详解】由三视图知,该几何体是由一个半径为2的半球的四分之三和一个底面半径2、高为4的圆柱组合而成,其体积为.故答案为:20.【点睛】本题考查三视图以及几何体体积,考查学生空间想象能力以及数学运算能力,是一道容易题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)极大值为;极小值为;(2)见解析【解析】
(1)对函数求导,进而可求出单调性,从而可求出函数的极值;(2)构造函数,求导并判断单调性可得,从而在上恒成立,再结合,,可得到,即可证明结论成立.【详解】(1)函数的定义域为,,所以当时,;当时,,则的单调递增区间为和,单调递减区间为.故的极大值为;的极小值为.(2)证明:由(1)知,设函数,则,,则在上恒成立,即在上单调递增,故,又,则,即在上恒成立.因为,所以,又,则,因为,且在上单调递减,所以,故.【点睛】本题考查函数的单调性与极值,考查了利用导数证明不等式,构造函数是解决本题的关键,属于难题.18、(1)见解析(2)【解析】试题分析:(1)根据已知条件由线线垂直得出线面垂直,再根据面面垂直的判定定理证得成立;(2)通过已知条件求出各边长度,建系如图所示,求出平面的法向量,根据线面角公式代入坐标求得结果.试题解析:(1)证明:取的中点,连接,则,又,所以,则四边形为平行四边形,所以,又平面,∴平面,∴.由即及为的中点,可得为等边三角形,∴,又,∴,∴,∴平面平面,∴平面平面.(2)解:,∴为直线与所成的角,由(1)可得,∴,∴,设,则,取的中点,连接,过作的平行线,可建立如图所示的空间直角坐标系,则,∴,所以,设为平面的法向量,则,即,取,则为平面的一个法向量,∵,则直线与平面所成角的正弦值为.点睛:判定直线和平面垂直的方法:①定义法.②利用判定定理:一条直线和一个平面内的两条相交直线都垂直,则该直线和此平面垂直.③推论:如果在两条平行直线中,有一条垂直于一个平面,那么另一条直线也垂直于这个平面.平面与平面垂直的判定方法:①定义法.②利用判定定理:一个平面过另一个平面的一条垂线,则这两个平面垂直.19、(1)增区间为,减区间为;(2).【解析】
(1)将代入函数的解析式,利用导数可得出函数的单调区间;(2)求函数的导数,分类讨论的范围,利用导数分析函数的单调性,求出函数的最值可判断是否恒成立,可得实数的取值范围.【详解】(1)当时,,则,当时,,则,此时,函数为减函数;当时,,则,此时,函数为增函数.所以,函数的增区间为,减区间为;(2),则,.①当时,即当时,,由,得,此时,函数为增函数;由,得,此时,函数为减函数.则,不合乎题意;②当时,即时,.不妨设,其中,令,则或.(i)当时,,当时,,此时,函数为增函数;当时,,此时,函数为减函数;当时,,此时,函数为增函数.此时,而,构造函数,,则,所以,函数在区间上单调递增,则,即当时,,所以,.,符合题意;②当时,,函数在上为增函数,,符合题意;③当时,同理可得函数在上单调递增,在上单调递减,在上单调递增,此时,则,解得.综上所述,实数的取值范围是.【点睛】本题考查导数知识的运用,考查函数的单调性与最值,考查恒成立问题,正确求导和分类讨论是关键,属于难题.20、(Ⅰ)证明见解析;(Ⅱ).【解析】
(Ⅰ)先证明
,再证明平面,利用面面垂直的判定定理,即可求证所求证;(Ⅱ)根据题意以为轴
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 总经理聘用合同签订与授权
- 休闲度假房产打印身心放松
- 商业建筑砌墙施工合同
- 农村宅基地租赁协议模板
- 航空客服招聘合同模板
- 农业园区机耕道修建协议
- 防噪音卷帘门安装合同样本
- JJJ景区餐饮店投标方案
- 服装设计教师招聘协议
- 教育机构加班安排细则
- 管沟开挖安全培训课件
- Clean-PVC管道粘接施工工艺标准
- 道教与中医学习通超星课后章节答案期末考试题库2023年
- 四年级语文试卷选择题100道
- 升压站设备安装调试工程施工质量验收及评定范围划分表
- 工程质量安全手册课件
- 2023北京东城区初二上期末考数学试卷及答案
- 科幻小说赏读知到章节答案智慧树2023年杭州师范大学
- 新编大学生安全教育知到章节答案智慧树2023年山东师范大学
- 心肺复苏实验指导书
- 2021-2022学年重庆市两江新区部编版六年级上册期末素质测查语文试卷(原卷版)
评论
0/150
提交评论