重庆市育仁中学2025届高三最后一模数学试题含解析_第1页
重庆市育仁中学2025届高三最后一模数学试题含解析_第2页
重庆市育仁中学2025届高三最后一模数学试题含解析_第3页
重庆市育仁中学2025届高三最后一模数学试题含解析_第4页
重庆市育仁中学2025届高三最后一模数学试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

重庆市育仁中学2025届高三最后一模数学试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.把函数图象上各点的横坐标伸长为原来的2倍,纵坐标不变,再将图象向右平移个单位,那么所得图象的一个对称中心为()A. B. C. D.2.在各项均为正数的等比数列中,若,则()A. B.6 C.4 D.53.设为等差数列的前项和,若,,则的最小值为()A. B. C. D.4.函数的图象大致为()A. B.C. D.5.已知函数,不等式对恒成立,则的取值范围为()A. B. C. D.6.圆心为且和轴相切的圆的方程是()A. B.C. D.7.如图,某几何体的三视图是由三个边长为2的正方形和其内部的一些虚线构成的,则该几何体的体积为()A. B. C.6 D.与点O的位置有关8.小张家订了一份报纸,送报人可能在早上之间把报送到小张家,小张离开家去工作的时间在早上之间.用表示事件:“小张在离开家前能得到报纸”,设送报人到达的时间为,小张离开家的时间为,看成平面中的点,则用几何概型的公式得到事件的概率等于()A. B. C. D.9.已知集合,集合,若,则()A. B. C. D.10.已知函数f(x)=sin2x+sin2(x),则f(x)的最小值为()A. B. C. D.11.设,分别是椭圆的左、右焦点,过的直线交椭圆于,两点,且,,则椭圆的离心率为()A. B. C. D.12.已知正三角形的边长为2,为边的中点,、分别为边、上的动点,并满足,则的取值范围是()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.若关于的不等式在时恒成立,则实数的取值范围是_____14.如图所示,在边长为4的正方形纸片中,与相交于.剪去,将剩余部分沿,折叠,使、重合,则以、、、为顶点的四面体的外接球的体积为________.15.设函数,当时,记最大值为,则的最小值为______.16.已知函数,若函数恰有4个零点,则实数的取值范围是________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)设的内角、、的对边长分别为、、.设为的面积,满足.(1)求;(2)若,求的最大值.18.(12分)已知数列为公差为d的等差数列,,,且,,依次成等比数列,.(1)求数列的前n项和;(2)若,求数列的前n项和为.19.(12分)设函数,.(Ⅰ)讨论的单调性;(Ⅱ)时,若,,求证:.20.(12分)已知如图1,在Rt△ABC中,∠ACB=30°,∠ABC=90°,D为AC中点,AEBD于E,延长AE交BC于F,将△ABD沿BD折起,使平面ABD平面BCD,如图2所示。(Ⅰ)求证:AE平面BCD;(Ⅱ)求二面角A-DC-B的余弦值;(Ⅲ)求三棱锥B-AEF与四棱锥A-FEDC的体积的比(只需写出结果,不要求过程).21.(12分)为践行“绿水青山就是金山银山”的发展理念和提高生态环境的保护意识,高二年级准备成立一个环境保护兴趣小组.该年级理科班有男生400人,女生200人;文科班有男生100人,女生300人.现按男、女用分层抽样从理科生中抽取6人,按男、女分层抽样从文科生中抽取4人,组成环境保护兴趣小组,再从这10人的兴趣小组中抽出4人参加学校的环保知识竞赛.(1)设事件为“选出的这4个人中要求有两个男生两个女生,而且这两个男生必须文、理科生都有”,求事件发生的概率;(2)用表示抽取的4人中文科女生的人数,求的分布列和数学期望.22.(10分)设函数().(1)讨论函数的单调性;(2)若关于x的方程有唯一的实数解,求a的取值范围.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】

试题分析:把函数图象上各点的横坐标伸长为原来的倍(纵坐标不变),可得的图象;再将图象向右平移个单位,可得的图象,那么所得图象的一个对称中心为,故选D.考点:三角函数的图象与性质.2、D【解析】

由对数运算法则和等比数列的性质计算.【详解】由题意.故选:D.【点睛】本题考查等比数列的性质,考查对数的运算法则.掌握等比数列的性质是解题关键.3、C【解析】

根据已知条件求得等差数列的通项公式,判断出最小时的值,由此求得的最小值.【详解】依题意,解得,所以.由解得,所以前项和中,前项的和最小,且.故选:C【点睛】本小题主要考查等差数列通项公式和前项和公式的基本量计算,考查等差数列前项和最值的求法,属于基础题.4、A【解析】

用偶函数的图象关于轴对称排除,用排除,用排除.故只能选.【详解】因为,所以函数为偶函数,图象关于轴对称,故可以排除;因为,故排除,因为由图象知,排除.故选:A【点睛】本题考查了根据函数的性质,辨析函数的图像,排除法,属于中档题.5、C【解析】

确定函数为奇函数,且单调递减,不等式转化为,利用双勾函数单调性求最值得到答案.【详解】是奇函数,,易知均为减函数,故且在上单调递减,不等式,即,结合函数的单调性可得,即,设,,故单调递减,故,当,即时取最大值,所以.故选:.【点睛】本题考查了根据函数单调性和奇偶性解不等式,参数分离求最值是解题的关键.6、A【解析】

求出所求圆的半径,可得出所求圆的标准方程.【详解】圆心为且和轴相切的圆的半径为,因此,所求圆的方程为.故选:A.【点睛】本题考查圆的方程的求解,一般求出圆的圆心和半径,考查计算能力,属于基础题.7、B【解析】

根据三视图还原直观图如下图所示,几何体的体积为正方体的体积减去四棱锥的体积,即可求出结论.【详解】如下图是还原后的几何体,是由棱长为2的正方体挖去一个四棱锥构成的,正方体的体积为8,四棱锥的底面是边长为2的正方形,顶点O在平面上,高为2,所以四棱锥的体积为,所以该几何体的体积为.故选:B.【点睛】本题考查三视图求几何体的体积,还原几何体的直观图是解题的关键,属于基础题.8、D【解析】

这是几何概型,画出图形,利用面积比即可求解.【详解】解:事件发生,需满足,即事件应位于五边形内,作图如下:故选:D【点睛】考查几何概型,是基础题.9、A【解析】

根据或,验证交集后求得的值.【详解】因为,所以或.当时,,不符合题意,当时,.故选A.【点睛】本小题主要考查集合的交集概念及运算,属于基础题.10、A【解析】

先通过降幂公式和辅助角法将函数转化为,再求最值.【详解】已知函数f(x)=sin2x+sin2(x),=,=,因为,所以f(x)的最小值为.故选:A【点睛】本题主要考查倍角公式及两角和与差的三角函数的逆用,还考查了运算求解的能力,属于中档题.11、C【解析】

根据表示出线段长度,由勾股定理,解出每条线段的长度,再由勾股定理构造出关系,求出离心率.【详解】设,则由椭圆的定义,可以得到,在中,有,解得在中,有整理得,故选C项.【点睛】本题考查几何法求椭圆离心率,是求椭圆离心率的一个常用方法,通过几何关系,构造出关系,得到离心率.属于中档题.12、A【解析】

建立平面直角坐标系,求出直线,设出点,通过,找出与的关系.通过数量积的坐标表示,将表示成与的关系式,消元,转化成或的二次函数,利用二次函数的相关知识,求出其值域,即为的取值范围.【详解】以D为原点,BC所在直线为轴,AD所在直线为轴建系,设,则直线,设点,所以由得,即,所以,由及,解得,由二次函数的图像知,,所以的取值范围是.故选A.【点睛】本题主要考查解析法在向量中的应用,以及转化与化归思想的运用.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】

利用对数函数的单调性,将不等式去掉对数符号,再依据分离参数法,转化成求构造函数最值问题,进而求得的取值范围。【详解】由得,两边同除以,得到,,,设,,由函数在上递减,所以,故实数的取值范围是。【点睛】本题主要考查对数函数的单调性,以及恒成立问题的常规解法——分离参数法。14、【解析】

将三棱锥置入正方体中,利用正方体体对角线为三棱锥外接球的直径即可得到答案.【详解】由已知,将三棱锥置入正方体中,如图所示,,故正方体体对角线长为,所以外接球半径为,其体积为.故答案为:.【点睛】本题考查三棱锥外接球的体积问题,一般在处理特殊几何体的外接球问题时,要考虑是否能将其置入正(长)方体中,是一道中档题.15、【解析】

易知,设,,利用绝对值不等式的性质即可得解.【详解】,设,,令,当时,,所以单调递减令,当时,,所以单调递增所以当时,,,则则,即故答案为:.【点睛】本题考查函数最值的求法,考查绝对值不等式的性质,考查转化思想及逻辑推理能力,属于难题.16、【解析】

函数恰有4个零点,等价于函数与函数的图象有四个不同的交点,画出函数图象,利用数形结合思想进行求解即可.【详解】函数恰有4个零点,等价于函数与函数的图象有四个不同的交点,画出函数图象如下图所示:由图象可知:实数的取值范围是.故答案为:【点睛】本题考查了已知函数零点个数求参数取值范围问题,考查了数形结合思想和转化思想.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】

(1)根据条件形式选择,然后利用余弦定理和正弦定理化简,即可求出;(2)由(1)求出角,利用正弦定理和消元思想,可分别用角的三角函数值表示出,即可得到,再利用三角恒等变换,化简为,即可求出最大值.【详解】(1)∵,即,∴变形得:,整理得:,又,∴;(2)∵,∴,由正弦定理知,,∴,当且仅当时取最大值.故的最大值为.【点睛】本题主要考查正弦定理,余弦定理,三角形面积公式的应用,以及利用三角恒等变换求函数的最值,意在考查学生的转化能力和数学运算能力,属于基础题18、(1)(2)【解析】

(1)利用等差数列的通项公式以及等比中项求出公差,从而求出,再利用等比数列的前项和公式即可求解.(2)由(1)求出,再利用裂项求和法即可求解.【详解】(1),且,,依次成等比数列,,即:,,,,,;(2),.【点睛】本题考查了等差数列、等比数列的通项公式、等比数列的前项和公式、裂项求和法,需熟记公式,属于基础题.19、(1)证明见解析;(2)证明见解析.【解析】

(1)首先对函数求导,再根据参数的取值,讨论的正负,即可求出关于的单调性即可;(2)首先通过构造新函数,讨论新函数的单调性,根据新函数的单调性证明.【详解】(1),令,则,令得,当时,则在单调递减,当时,则在单调递增,所以,当时,,即,则在上单调递增,当时,,易知当时,,当时,,由零点存在性定理知,,不妨设,使得,当时,,即,当时,,即,当时,,即,所以在和上单调递增,在单调递减;(2)证明:构造函数,,,,整理得,,(当时等号成立),所以在上单调递增,则,所以在上单调递增,,这里不妨设,欲证,即证由(1)知时,在上单调递增,则需证,由已知有,只需证,即证,由在上单调递增,且时,有,故成立,从而得证.【点睛】本题主要考查了导数含参分类讨论单调性,借助构造函数和单调性证明不等式,属于难题.20、(Ⅰ)证明见解析;(Ⅱ);(Ⅲ)1:5【解析】

(Ⅰ)由平面ABD⊥平面BCD,交线为BD,AE⊥BD于E,能证明AE⊥平面BCD;(Ⅱ)以E为坐标原点,分别以EF、ED、EA所在直线为x轴,y轴,z轴,建立空间直角坐标系E-xyz,利用向量法求出二面角A-DC-B的余弦值;(Ⅲ)利用体积公式分别求出三棱锥B-AEF与四棱锥A-FEDC的体积,再作比写出答案即可.【详解】(Ⅰ)证明:∵平面ABD⊥平面BCD,交线为BD,又在△ABD中,AE⊥BD于E,AE⊂平面ABD,∴AE⊥平面BCD.(Ⅱ)由(1)知AE⊥平面BCD,∴AE⊥EF,由题意知EF⊥BD,又AE⊥BD,如图,以E为坐标原点,分别以EF、ED、EA所在直线为x轴,y轴,z轴,

建立空间直角坐标系E-xyz,设AB=BD=DC=AD=2,

则BE=ED=1,∴AE=,BC=2,BF=,则E(0,0,0),D(0,1,0),B(0,-1,0),A(0,0,),

F(,0,0),C(,2,0),,,由AE⊥平面BCD知平面BCD的一个法向量为,设平面ADC的一个法向量,则,取x=1,得,∴,∴二面角A-DC-B的平面角为锐角,故余弦值为.

(Ⅲ)三棱锥B-AEF与四棱锥A-FEDC的体积的比为:1:5.【点睛】本题考查线面垂直的证明、几何体体积计算、二面角有关的立体几何综合题,属于中等题.21、(1);(2)见解析【解析】

(1)按分层抽样得抽取了理科男生4人,女生2人,文科男生1人,女生3人,再利用古典概型求解即可(2)由超几何分布求解即可【详解】(1)因为学生总数为1000人,该年级分文、理科按男女用分层抽样抽取10人,则抽取了理科男生4人,女生2人,文科男生1人,女生3人.所以.(2)的可能取值为0,1,2,3,,,,,的分布列为0123.【点睛】本题考查分层抽样,考查超几何分布及期望,考查运算求解能力,是基础题22、(1)当时,递增区间时,无递减区间,当时,递增区间时,递减区间时;(2)或.【解析】

(1)求出,对分类讨论,先考虑(或)恒成立的范围,并以此作为的分类标准,若不恒成立,求解,即可得出结论;(2)有解,即,令,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论