云南省麻栗坡县一中2025届高考仿真模拟数学试卷含解析_第1页
云南省麻栗坡县一中2025届高考仿真模拟数学试卷含解析_第2页
云南省麻栗坡县一中2025届高考仿真模拟数学试卷含解析_第3页
云南省麻栗坡县一中2025届高考仿真模拟数学试卷含解析_第4页
云南省麻栗坡县一中2025届高考仿真模拟数学试卷含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

云南省麻栗坡县一中2025届高考仿真模拟数学试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知复数z满足(i为虚数单位),则在复平面内复数z对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限2.已知集合U={1,2,3,4,5,6},A={2,4},B={3,4},则=()A.{3,5,6} B.{1,5,6} C.{2,3,4} D.{1,2,3,5,6}3.中,,为的中点,,,则()A. B. C. D.24.函数的图象与轴交点的横坐标构成一个公差为的等差数列,要得到函数的图象,只需将的图象()A.向左平移个单位 B.向右平移个单位C.向左平移个单位 D.向右平移个单位5.已知定点都在平面内,定点是内异于的动点,且,那么动点在平面内的轨迹是()A.圆,但要去掉两个点 B.椭圆,但要去掉两个点C.双曲线,但要去掉两个点 D.抛物线,但要去掉两个点6.已知函数f(x)=eb﹣x﹣ex﹣b+c(b,c均为常数)的图象关于点(2,1)对称,则f(5)+f(﹣1)=()A.﹣2 B.﹣1 C.2 D.47.函数的部分图象如图所示,则的单调递增区间为()A. B.C. D.8.函数的图象大致是()A. B.C. D.9.已知F是双曲线(k为常数)的一个焦点,则点F到双曲线C的一条渐近线的距离为()A.2k B.4k C.4 D.210.已知抛物线和点,直线与抛物线交于不同两点,,直线与抛物线交于另一点.给出以下判断:①直线与直线的斜率乘积为;②轴;③以为直径的圆与抛物线准线相切.其中,所有正确判断的序号是()A.①②③ B.①② C.①③ D.②③11.已知正项等比数列的前项和为,且,则公比的值为()A. B.或 C. D.12.若,则,,,的大小关系为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.如图所示,在直角梯形中,,、分别是、上的点,,且(如图①).将四边形沿折起,连接、、(如图②).在折起的过程中,则下列表述:①平面;②四点、、、可能共面;③若,则平面平面;④平面与平面可能垂直.其中正确的是__________.14.已知向量,,,则__________.15.在中,点在边上,且,设,,则________(用,表示)16.若函数在区间上恰有4个不同的零点,则正数的取值范围是______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在直角坐标系中,曲线的参数方程为(为参数),坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求曲线的普通方程和曲线的直角坐标方程;(2)若曲线、交于、两点,是曲线上的动点,求面积的最大值.18.(12分)已知函数,(其中,).(1)求函数的最小值.(2)若,求证:.19.(12分)在直角坐标系中,圆的参数方程为:(为参数),以坐标原点为极点,以轴的正半轴为极轴建立极坐标系,且长度单位相同.(1)求圆的极坐标方程;(2)若直线:(为参数)被圆截得的弦长为,求直线的倾斜角.20.(12分)某百货商店今年春节期间举行促销活动,规定消费达到一定标准的顾客可进行一次抽奖活动,随着抽奖活动的有效开展,参与抽奖活动的人数越来越多,该商店经理对春节前天参加抽奖活动的人数进行统计,表示第天参加抽奖活动的人数,得到统计表格如下:123456758810141517(1)经过进一步统计分析,发现与具有线性相关关系.请根据上表提供的数据,用最小二乘法求出关于的线性回归方程;(2)该商店规定:若抽中“一等奖”,可领取600元购物券;抽中“二等奖”可领取300元购物券;抽中“谢谢惠顾”,则没有购物券.已知一次抽奖活动获得“一等奖”的概率为,获得“二等奖”的概率为.现有张、王两位先生参与了本次活动,且他们是否中奖相互独立,求此二人所获购物券总金额的分布列及数学期望.参考公式:,,,.21.(12分)已知三棱锥P-ABC(如图一)的平面展开图(如图二)中,四边形ABCD为边长等于的正方形,和均为正三角形,在三棱锥P-ABC中:(1)证明:平面平面ABC;(2)若点M在棱PA上运动,当直线BM与平面PAC所成的角最大时,求直线MA与平面MBC所成角的正弦值.22.(10分)已知函数的定义域为.(1)求实数的取值范围;(2)设实数为的最小值,若实数,,满足,求的最小值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】

根据复数运算,求得,再求其对应点即可判断.【详解】,故其对应点的坐标为.其位于第四象限.故选:D.【点睛】本题考查复数的运算,以及复数对应点的坐标,属综合基础题.2、B【解析】

按补集、交集定义,即可求解.【详解】={1,3,5,6},={1,2,5,6},所以={1,5,6}.故选:B.【点睛】本题考查集合间的运算,属于基础题.3、D【解析】

在中,由正弦定理得;进而得,在中,由余弦定理可得.【详解】在中,由正弦定理得,得,又,所以为锐角,所以,,在中,由余弦定理可得,.故选:D【点睛】本题主要考查了正余弦定理的应用,考查了学生的运算求解能力.4、A【解析】依题意有的周期为.而,故应左移.5、A【解析】

根据题意可得,即知C在以AB为直径的圆上.【详解】,,,又,,平面,又平面,故在以为直径的圆上,又是内异于的动点,所以的轨迹是圆,但要去掉两个点A,B故选:A【点睛】本题主要考查了线面垂直、线线垂直的判定,圆的性质,轨迹问题,属于中档题.6、C【解析】

根据对称性即可求出答案.【详解】解:∵点(5,f(5))与点(﹣1,f(﹣1))满足(5﹣1)÷2=2,故它们关于点(2,1)对称,所以f(5)+f(﹣1)=2,故选:C.【点睛】本题主要考查函数的对称性的应用,属于中档题.7、D【解析】

由图象可以求出周期,得到,根据图象过点可求,根据正弦型函数的性质求出单调增区间即可.【详解】由图象知,所以,,又图象过点,所以,故可取,所以令,解得所以函数的单调递增区间为故选:.【点睛】本题主要考查了三角函数的图象与性质,利用“五点法”求函数解析式,属于中档题.8、A【解析】

根据复合函数的单调性,同增异减以及采用排除法,可得结果.【详解】当时,,由在递增,所以在递增又是增函数,所以在递增,故排除B、C当时,若,则所以在递减,而是增函数所以在递减,所以A正确,D错误故选:A【点睛】本题考查具体函数的大致图象的判断,关键在于对复合函数单调性的理解,记住常用的结论:增+增=增,增-减=增,减+减=减,复合函数单调性同增异减,属中档题.9、D【解析】

分析可得,再去绝对值化简成标准形式,进而根据双曲线的性质求解即可.【详解】当时,等式不是双曲线的方程;当时,,可化为,可得虚半轴长,所以点F到双曲线C的一条渐近线的距离为2.故选:D【点睛】本题考查双曲线的方程与点到直线的距离.属于基础题.10、B【解析】

由题意,可设直线的方程为,利用韦达定理判断第一个结论;将代入抛物线的方程可得,,从而,,进而判断第二个结论;设为抛物线的焦点,以线段为直径的圆为,则圆心为线段的中点.设,到准线的距离分别为,,的半径为,点到准线的距离为,显然,,三点不共线,进而判断第三个结论.【详解】解:由题意,可设直线的方程为,代入抛物线的方程,有.设点,的坐标分别为,,则,.所.则直线与直线的斜率乘积为.所以①正确.将代入抛物线的方程可得,,从而,,根据抛物线的对称性可知,,两点关于轴对称,所以直线轴.所以②正确.如图,设为抛物线的焦点,以线段为直径的圆为,则圆心为线段的中点.设,到准线的距离分别为,,的半径为,点到准线的距离为,显然,,三点不共线,则.所以③不正确.故选:B.【点睛】本题主要考查抛物线的定义与几何性质、直线与抛物线的位置关系等基础知识,考查运算求解能力、推理论证能力和创新意识,考查数形结合思想、化归与转化思想,属于难题.11、C【解析】

由可得,故可求的值.【详解】因为,所以,故,因为正项等比数列,故,所以,故选C.【点睛】一般地,如果为等比数列,为其前项和,则有性质:(1)若,则;(2)公比时,则有,其中为常数且;(3)为等比数列()且公比为.12、D【解析】因为,所以,因为,,所以,.综上;故选D.二、填空题:本题共4小题,每小题5分,共20分。13、①③【解析】

连接、交于点,取的中点,证明四边形为平行四边形,可判断命题①的正误;利用线面平行的性质定理和空间平行线的传递性可判断命题②的正误;连接,证明出,结合线面垂直和面面垂直的判定定理可判断命题③的正误;假设平面与平面垂直,利用面面垂直的性质定理可判断命题④的正误.综合可得出结论.【详解】对于命题①,连接、交于点,取的中点、,连接、,如下图所示:则且,四边形是矩形,且,为的中点,为的中点,且,且,四边形为平行四边形,,即,平面,平面,平面,命题①正确;对于命题②,,平面,平面,平面,若四点、、、共面,则这四点可确定平面,则,平面平面,由线面平行的性质定理可得,则,但四边形为梯形且、为两腰,与相交,矛盾.所以,命题②错误;对于命题③,连接、,设,则,在中,,,则为等腰直角三角形,且,,,且,由余弦定理得,,,又,,平面,平面,,,、为平面内的两条相交直线,所以,平面,平面,平面平面,命题③正确;对于命题④,假设平面与平面垂直,过点在平面内作,平面平面,平面平面,,平面,平面,平面,,,,,,,又,平面,平面,.,平面,平面,.,,显然与不垂直,命题④错误.故答案为:①③.【点睛】本题考查立体几何综合问题,涉及线面平行、面面垂直的证明、以及点共面的判断,考查推理能力,属于中等题.14、3【解析】

由题意得,,再代入中,计算即可得答案.【详解】由题意可得,,∴,解得,∴.故答案为:.【点睛】本题考查向量模的计算,考查函数与方程思想、转化与化归思想,考查运算求解能力,求解时注意向量数量积公式的运用.15、【解析】

结合图形及向量的线性运算将转化为用向量表示,即可得到结果.【详解】在中,因为,所以,又因为,所以.故答案为:【点睛】本题主要考查三角形中向量的线性运算,关键是利用已知向量为基底,将未知向量通过几何条件向基底转化.16、;【解析】

求出函数的零点,让正数零点从小到大排列,第三个正数零点落在区间上,第四个零点在区间外即可.【详解】由,得,,,,∵,∴,解得.故答案为:.【点睛】本题考查函数的零点,根据正弦函数性质求出函数零点,然后题意,把正数零点从小到大排列,由于0已经是一个零点,因此只有前3个零点在区间上.由此可得的不等关系,从而得出结论,本题解法属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1),;(2).【解析】

(1)在曲线的参数方程中消去参数,可得出曲线的普通方程,将曲线的极坐标方程变形为,进而可得出曲线的直角坐标方程;(2)求出点到直线的最大距离,以及直线截圆所得弦长,利用三角形的面积公式可求得面积的最大值.【详解】(1)由曲线的参数方程得,.所以,曲线的普通方程为,将曲线的极坐标方程变形为,所以,曲线的直角坐标方程为;(2)曲线是圆心为,半径为为圆,圆心到直线的距离为,所以,点到直线的最大距离为,,因此,的面积为最大值为.【点睛】本题考查曲线的参数方程、极坐标方程与普通方程之间的相互转换,同时也考查了直线截圆所形成的三角形面积最值的计算,考查计算能力,属于中等题.18、(1).(2)答案见解析【解析】

(1)利用绝对值不等式的性质即可求得最小值;(2)利用分析法,只需证明,两边平方后结合即可得证.【详解】(1),当且仅当时取等号,∴的最小值;(2)证明:依题意,,要证,即证,即证,即证,即证,又可知,成立,故原不等式成立.【点睛】本题考查用绝对值三角不等式求最值,考查用分析法证明不等式,在不等式不易证明时,可通过执果索因的方法寻找结论成立的充分条件,完成证明,这就是分析法.19、(1);(2)或【解析】

(1)消去参数可得圆的直角坐标方程,再根据,,即可得极坐标方程;(2)写出直线的极坐标方程为,代入圆的极坐标方程,根据极坐标的意义列出等式解出即可.【详解】(1)圆:,消去参数得:,即:,∵,,.∴,.(2)∵直线:的极坐标方程为,当时.即:,∴或.∴或,∴直线的倾斜角为或.【点睛】本题主要考查了参数方程化为普通方程,直角坐标方程化为极坐标方程以及极坐标的几何意义,属于中档题.20、(1);(2)见解析【解析】试题分析:(I)由题意可得,,则,,关于的线性回归方程为.(II)由题意可知二人所获购物券总金额的可能取值有、、、、元,它们所对应的概率分别为:,,,.据此可得分布列,计算相应的数学期望为元.试题解析:(I)依题意:,,,,,,则关于的线性回归方程为.(II)二人所获购物券总金额的可能取值有、、、、元,它们所对应的概率分别为:,,,,.所以,总金额的分布列如下表:03006009001200总金额的数学期望为元.21、(1)见解析(2)【解析】

(1)设的中点为,连接.由展开图可知,,.为的中点,则有,根据勾股定

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论