北京师范大学《机器学习与深度学习》2023-2024学年第一学期期末试卷_第1页
北京师范大学《机器学习与深度学习》2023-2024学年第一学期期末试卷_第2页
北京师范大学《机器学习与深度学习》2023-2024学年第一学期期末试卷_第3页
北京师范大学《机器学习与深度学习》2023-2024学年第一学期期末试卷_第4页
北京师范大学《机器学习与深度学习》2023-2024学年第一学期期末试卷_第5页
已阅读5页,还剩1页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共3页北京师范大学《机器学习与深度学习》

2023-2024学年第一学期期末试卷题号一二三四总分得分一、单选题(本大题共20个小题,每小题2分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、在机器学习中,监督学习是一种常见的学习方式。假设我们要使用监督学习算法来预测房价,给定了大量的房屋特征(如面积、房间数量、地理位置等)以及对应的房价数据。以下关于监督学习在这个任务中的描述,哪一项是不准确的?()A.可以使用线性回归算法,建立房屋特征与房价之间的线性关系模型B.决策树算法可以根据房屋特征的不同取值来划分决策节点,最终预测房价C.支持向量机通过寻找一个最优的超平面来对房屋数据进行分类,从而预测房价D.无监督学习算法如K-Means聚类算法可以直接用于房价的预测,无需对数据进行标注2、在一个图像生成的任务中,需要根据给定的描述或条件生成逼真的图像。考虑到生成图像的质量、多样性和创新性。以下哪种生成模型可能是最有潜力的?()A.生成对抗网络(GAN),通过对抗训练生成逼真的图像,但可能存在模式崩溃和训练不稳定的问题B.变分自编码器(VAE),能够学习数据的潜在分布并生成新样本,但生成的图像可能较模糊C.自回归模型,如PixelCNN,逐像素生成图像,保证了局部一致性,但生成速度较慢D.扩散模型,通过逐步去噪生成图像,具有较高的质量和多样性,但计算成本较高3、在强化学习中,智能体通过与环境交互来学习最优策略。如果智能体在某个状态下采取的行动总是导致低奖励,它应该()A.继续采取相同的行动,希望情况会改善B.随机选择其他行动C.根据策略网络的输出选择行动D.调整策略以避免采取该行动4、在强化学习中,智能体通过与环境进行交互来学习最优策略。假设一个机器人需要在复杂的环境中找到通往目标的最佳路径,并且在途中会遇到各种障碍和奖励。在这种情况下,以下哪种强化学习算法可能更适合解决这个问题?()A.Q-learning算法,通过估计状态-动作值函数来选择动作B.SARSA算法,基于当前策略进行策略评估和改进C.策略梯度算法,直接优化策略的参数D.以上算法都不适合,需要使用专门的路径规划算法5、在进行特征工程时,需要对连续型特征进行离散化处理。以下哪种离散化方法在某些情况下可以保留更多的信息,同时减少数据的复杂性?()A.等宽离散化B.等频离散化C.基于聚类的离散化D.基于决策树的离散化6、强化学习中的智能体通过与环境的交互来学习最优策略。以下关于强化学习的说法中,错误的是:强化学习的目标是最大化累计奖励。智能体根据当前状态选择动作,环境根据动作反馈新的状态和奖励。那么,下列关于强化学习的说法错误的是()A.Q学习是一种基于值函数的强化学习算法B.策略梯度算法是一种基于策略的强化学习算法C.强化学习算法只适用于离散动作空间,对于连续动作空间不适用D.强化学习可以应用于机器人控制、游戏等领域7、假设要使用机器学习算法来预测房价。数据集包含了房屋的面积、位置、房间数量等特征。如果特征之间存在非线性关系,以下哪种模型可能更适合?()A.线性回归模型B.决策树回归模型C.支持向量回归模型D.以上模型都可能适用8、在使用梯度下降算法优化模型参数时,如果学习率设置过大,可能会导致以下哪种情况()A.收敛速度加快B.陷入局部最优解C.模型无法收敛D.以上情况都不会发生9、在进行机器学习模型评估时,除了准确性等常见指标外,还可以使用混淆矩阵来更详细地分析模型的性能。对于一个二分类问题,混淆矩阵包含了真阳性(TP)、真阴性(TN)、假阳性(FP)和假阴性(FN)等信息。以下哪个指标可以通过混淆矩阵计算得到,并且对于不平衡数据集的评估较为有效?()A.准确率(Accuracy)B.召回率(Recall)C.F1值D.均方误差(MSE)10、假设要预测一个时间序列数据中的突然变化点,以下哪种方法可能是最合适的?()A.滑动窗口分析,通过比较相邻窗口的数据差异来检测变化,但窗口大小选择困难B.基于统计的假设检验,如t检验或方差分析,但对数据分布有要求C.变点检测算法,如CUSUM或Pettitt检验,专门用于检测变化点,但可能对噪声敏感D.深度学习中的异常检测模型,能够自动学习变化模式,但需要大量数据训练11、在使用朴素贝叶斯算法进行分类时,以下关于朴素贝叶斯的假设和特点,哪一项是不正确的?()A.假设特征之间相互独立,简化了概率计算B.对于连续型特征,通常需要先进行离散化处理C.朴素贝叶斯算法对输入数据的分布没有要求,适用于各种类型的数据D.朴素贝叶斯算法在处理高维度数据时性能较差,容易出现过拟合12、在使用随机森林算法进行分类任务时,以下关于随机森林特点的描述,哪一项是不准确的?()A.随机森林是由多个决策树组成的集成模型,通过投票来决定最终的分类结果B.随机森林在训练过程中对特征进行随机抽样,增加了模型的随机性和多样性C.随机森林对于处理高维度数据和缺失值具有较好的鲁棒性D.随机森林的训练速度比单个决策树慢,因为需要构建多个决策树13、在一个聚类问题中,需要将一组数据点划分到不同的簇中,使得同一簇内的数据点相似度较高,不同簇之间的数据点相似度较低。假设我们使用K-Means算法进行聚类,以下关于K-Means算法的初始化步骤,哪一项是正确的?()A.随机选择K个数据点作为初始聚类中心B.选择数据集中前K个数据点作为初始聚类中心C.计算数据点的均值作为初始聚类中心D.以上方法都可以,对最终聚类结果没有影响14、在一个医疗诊断项目中,我们希望利用机器学习算法来预测患者是否患有某种疾病。收集到的数据集包含患者的各种生理指标、病史等信息。在选择合适的机器学习算法时,需要考虑多个因素,如数据的规模、特征的数量、数据的平衡性等。如果数据量较大,特征维度较高,且存在一定的噪声,以下哪种算法可能是最优选择?()A.逻辑回归算法,简单且易于解释B.决策树算法,能够处理非线性关系C.支持向量机算法,在小样本数据上表现出色D.随机森林算法,对噪声和异常值具有较好的容忍性15、在构建机器学习模型时,选择合适的正则化方法可以防止过拟合。假设我们正在训练一个逻辑回归模型。以下关于正则化的描述,哪一项是错误的?()A.L1正则化会使部分模型参数变为0,从而实现特征选择B.L2正则化通过对模型参数的平方和进行惩罚,使参数值变小C.正则化参数越大,对模型的约束越强,可能导致模型欠拟合D.同时使用L1和L2正则化(ElasticNet)总是比单独使用L1或L2正则化效果好16、在一个强化学习问题中,如果环境的状态空间非常大,以下哪种技术可以用于有效地表示和处理状态?()A.函数逼近B.状态聚类C.状态抽象D.以上技术都可以17、考虑一个情感分析任务,判断一段文本所表达的情感是积极、消极还是中性。在特征提取方面,可以使用词袋模型、TF-IDF等方法。如果文本数据量较大,且包含丰富的语义信息,以下哪种特征提取方法可能表现更好?()A.词袋模型,简单直观,计算速度快B.TF-IDF,考虑了词的频率和文档的分布C.基于深度学习的词向量表示,能够捕捉语义和上下文信息D.以上方法效果相同,取决于模型的复杂程度18、在一个图像分类任务中,如果需要快速进行模型的训练和预测,以下哪种轻量级模型架构可能比较适合?()A.MobileNetB.ResNetC.InceptionD.VGG19、欠拟合也是机器学习中需要关注的问题。以下关于欠拟合的说法中,错误的是:欠拟合是指模型在训练数据和测试数据上的表现都不佳。欠拟合的原因可能是模型过于简单或者数据特征不足。那么,下列关于欠拟合的说法错误的是()A.增加模型的复杂度可以缓解欠拟合问题B.收集更多的特征数据可以缓解欠拟合问题C.欠拟合问题比过拟合问题更容易解决D.欠拟合只在小样本数据集上出现,大规模数据集不会出现欠拟合问题20、在处理自然语言处理任务时,词嵌入(WordEmbedding)是一种常用的技术。假设我们要对一段文本进行情感分析。以下关于词嵌入的描述,哪一项是错误的?()A.词嵌入将单词表示为低维实数向量,捕捉单词之间的语义关系B.Word2Vec和GloVe是常见的词嵌入模型,可以学习到单词的分布式表示C.词嵌入向量的维度通常是固定的,且不同单词的向量维度必须相同D.词嵌入可以直接用于文本分类任务,无需进行进一步的特征工程二、简答题(本大题共3个小题,共15分)1、(本题5分)解释机器学习在海洋生物学中的生态监测。2、(本题5分)解释如何在机器学习中处理不平衡的多标签分类问题。3、(本题5分)简述在智能交通系统中,机器学习的应用。三、应用题(本大题共5个小题,共25分)1、(本题5分)通过主成分分析降低图像数据的维度,以加快处理速度。2、(本题5分)借助生物多样性研究数据制

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论