北京理工大学《机器学习》2022-2023学年第一学期期末试卷_第1页
北京理工大学《机器学习》2022-2023学年第一学期期末试卷_第2页
北京理工大学《机器学习》2022-2023学年第一学期期末试卷_第3页
北京理工大学《机器学习》2022-2023学年第一学期期末试卷_第4页
北京理工大学《机器学习》2022-2023学年第一学期期末试卷_第5页
已阅读5页,还剩1页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

装订线装订线PAGE2第1页,共3页北京理工大学《机器学习》

2022-2023学年第一学期期末试卷院(系)_______班级_______学号_______姓名_______题号一二三四总分得分批阅人一、单选题(本大题共20个小题,每小题1分,共20分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、在机器学习中,特征工程是非常重要的一步。假设我们要预测一个城市的空气质量,有许多相关的原始数据,如气象数据、交通流量、工厂排放等。以下关于特征工程的描述,哪一项是不准确的?()A.对原始数据进行标准化或归一化处理,可以使不同特征在数值上具有可比性B.从原始数据中提取新的特征,例如计算交通流量的日变化率,有助于提高模型的性能C.特征选择是选择对目标变量有显著影响的特征,去除冗余或无关的特征D.特征工程只需要在模型训练之前进行一次,后续不需要再进行调整和优化2、在一个异常检测任务中,如果异常样本的特征与正常样本有很大的不同,以下哪种方法可能效果较好?()A.基于距离的方法,如K近邻B.基于密度的方法,如DBSCANC.基于聚类的方法,如K-MeansD.以上都不行3、在进行模型评估时,除了准确率、召回率等指标,还可以使用混淆矩阵来更全面地了解模型的性能。假设我们有一个二分类模型的混淆矩阵。以下关于混淆矩阵的描述,哪一项是不准确的?()A.混淆矩阵的行表示真实类别,列表示预测类别B.真阳性(TruePositive,TP)表示实际为正例且被预测为正例的样本数量C.假阴性(FalseNegative,FN)表示实际为正例但被预测为负例的样本数量D.混淆矩阵只能用于二分类问题,不能用于多分类问题4、某研究需要对生物信息数据进行分析,例如基因序列数据。以下哪种机器学习方法在处理生物信息学问题中经常被应用?()A.隐马尔可夫模型B.条件随机场C.深度学习模型D.以上方法都常用5、在一个图像生成任务中,例如生成逼真的人脸图像,生成对抗网络(GAN)是一种常用的方法。GAN由生成器和判别器组成,它们在训练过程中相互对抗。以下关于GAN训练过程的描述,哪一项是不正确的?()A.生成器的目标是生成尽可能逼真的图像,以欺骗判别器B.判别器的目标是准确区分真实图像和生成器生成的图像C.训练初期,生成器和判别器的性能都比较差,生成的图像质量较低D.随着训练的进行,判别器的性能逐渐下降,而生成器的性能不断提升6、在进行强化学习中的策略优化时,以下关于策略优化方法的描述,哪一项是不正确的?()A.策略梯度方法通过直接计算策略的梯度来更新策略参数B.信赖域策略优化(TrustRegionPolicyOptimization,TRPO)通过限制策略更新的幅度来保证策略的改进C.近端策略优化(ProximalPolicyOptimization,PPO)是一种基于策略梯度的改进算法,具有更好的稳定性和收敛性D.所有的策略优化方法在任何强化学习任务中都能取得相同的效果,不需要根据任务特点进行选择7、在进行特征工程时,如果特征之间存在共线性,即一个特征可以由其他特征线性表示,以下哪种方法可以处理共线性?()A.去除相关特征B.对特征进行主成分分析C.对特征进行标准化D.以上都可以8、某机器学习模型在训练过程中,损失函数的值一直没有明显下降。以下哪种可能是导致这种情况的原因?()A.学习率过高B.模型过于复杂C.数据预处理不当D.以上原因都有可能9、在机器学习中,数据预处理是非常重要的环节。以下关于数据预处理的说法中,错误的是:数据预处理包括数据清洗、数据归一化、数据标准化等步骤。目的是提高数据的质量和可用性。那么,下列关于数据预处理的说法错误的是()A.数据清洗可以去除数据中的噪声和异常值B.数据归一化将数据映射到[0,1]区间,便于不同特征之间的比较C.数据标准化将数据的均值和标准差调整为特定的值D.数据预处理对模型的性能影响不大,可以忽略10、在一个回归问题中,如果需要考虑多个输出变量之间的相关性,以下哪种模型可能更适合?()A.多元线性回归B.向量自回归(VAR)C.多任务学习模型D.以上模型都可以11、在使用朴素贝叶斯算法进行分类时,以下关于朴素贝叶斯的假设和特点,哪一项是不正确的?()A.假设特征之间相互独立,简化了概率计算B.对于连续型特征,通常需要先进行离散化处理C.朴素贝叶斯算法对输入数据的分布没有要求,适用于各种类型的数据D.朴素贝叶斯算法在处理高维度数据时性能较差,容易出现过拟合12、假设正在进行一个异常检测任务,数据具有高维度和复杂的分布。以下哪种技术可以用于将高维数据映射到低维空间以便更好地检测异常?()A.核主成分分析(KPCA)B.局部线性嵌入(LLE)C.拉普拉斯特征映射D.以上技术都可以13、假设要对一个时间序列数据进行预测,例如股票价格的走势。数据具有明显的趋势和季节性特征。以下哪种时间序列预测方法可能较为合适?()A.移动平均法B.指数平滑法C.ARIMA模型D.以上方法都可能适用,取决于具体数据特点14、在一个图像分类任务中,模型在训练集上表现良好,但在测试集上性能显著下降。这种现象可能是由于什么原因导致的?()A.过拟合B.欠拟合C.数据不平衡D.特征选择不当15、某机器学习项目需要对视频数据进行分析和理解。以下哪种方法可以将视频数据转换为适合机器学习模型处理的形式?()A.提取关键帧B.视频编码C.光流计算D.以上方法都可以16、在进行深度学习模型的训练时,优化算法对模型的收敛速度和性能有重要影响。假设我们正在训练一个多层感知机(MLP)模型。以下关于优化算法的描述,哪一项是不正确的?()A.随机梯度下降(SGD)算法是一种常用的优化算法,通过不断调整模型参数来最小化损失函数B.动量(Momentum)方法可以加速SGD的收敛,减少震荡C.Adagrad算法根据每个参数的历史梯度自适应地调整学习率,对稀疏特征效果较好D.所有的优化算法在任何情况下都能使模型快速收敛到最优解,不需要根据模型和数据特点进行选择17、在机器学习中,强化学习是一种通过与环境交互来学习最优策略的方法。假设一个机器人要通过强化学习来学习如何在复杂的环境中行走。以下关于强化学习的描述,哪一项是不正确的?()A.强化学习中的智能体根据环境的反馈(奖励或惩罚)来调整自己的行为策略B.Q-learning是一种基于值函数的强化学习算法,通过估计状态-动作值来选择最优动作C.策略梯度算法直接优化策略函数,通过计算策略的梯度来更新策略参数D.强化学习不需要对环境进行建模,只需要不断尝试不同的动作就能找到最优策略18、在一个工业生产的质量控制场景中,需要通过机器学习来实时监测产品的质量参数,及时发现异常。数据具有高维度、动态变化和噪声等特点。以下哪种监测和分析方法可能是最合适的?()A.基于主成分分析(PCA)的降维方法,找出主要的影响因素,但对异常的敏感度可能较低B.采用孤立森林算法,专门用于检测异常数据点,但对于高维数据效果可能不稳定C.运用自组织映射(SOM)网络,能够对数据进行聚类和可视化,但实时性可能不足D.利用基于深度学习的自动编码器(Autoencoder),学习正常数据的模式,对异常数据有较好的检测能力,但训练和计算成本较高19、在自然语言处理中,词嵌入(WordEmbedding)的作用是()A.将单词转换为向量B.进行词性标注C.提取文本特征D.以上都是20、当处理不平衡数据集(即某个类别在数据中占比极小)时,以下哪种方法可以提高模型对少数类别的识别能力()A.对多数类别进行欠采样B.对少数类别进行过采样C.调整分类阈值D.以上方法都可以二、简答题(本大题共5个小题,共25分)1、(本题5分)解释交叉验证在模型选择和评估中的用途。2、(本题5分)简述在智能安防中,机器学习的应用。3、(本题5分)谈谈如何使用机器学习进行舆情监测。4、(本题5分)解释如何使用机器学习进行空气质量预测。5、(本题5分)解释如何使用协同过滤算法进行推荐。三、应用题(本大题共5个小题,共25分)1、(本题5分)利用宗教研究数据了解宗教信仰和文化传播。2、(本题5分)依据细胞凋亡机制数据研究细胞死亡的调控和疾病发生。3、(本题5分)通过经济学数据构建经济预测模型。4、(本题5分)基于教育数据为学生提供个性化学习路径,提高学习效果。5、(本题5分)依据社会学调查数据分析社会现象和趋势。四、论述题(本大题共3个小题,共30分)1、(本题

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论