版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省济宁市邹城市2025届高考仿真卷数学试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在中,内角所对的边分别为,若依次成等差数列,则()A.依次成等差数列 B.依次成等差数列C.依次成等差数列 D.依次成等差数列2.已知抛物线和点,直线与抛物线交于不同两点,,直线与抛物线交于另一点.给出以下判断:①直线与直线的斜率乘积为;②轴;③以为直径的圆与抛物线准线相切.其中,所有正确判断的序号是()A.①②③ B.①② C.①③ D.②③3.已知双曲线的左,右焦点分别为、,过的直线l交双曲线的右支于点P,以双曲线的实轴为直径的圆与直线l相切,切点为H,若,则双曲线C的离心率为()A. B. C. D.4.已知双曲线的左,右焦点分别为,O为坐标原点,P为双曲线在第一象限上的点,直线PO,分别交双曲线C的左,右支于另一点,且,则双曲线的离心率为()A. B.3 C.2 D.5.某几何体的三视图如图所示,则该几何体的体积为()A. B. C. D.6.半径为2的球内有一个内接正三棱柱,则正三棱柱的侧面积的最大值为()A. B. C. D.7.函数的部分图象如图所示,则的单调递增区间为()A. B.C. D.8.某工厂一年中各月份的收入、支出情况的统计如图所示,下列说法中错误的是().A.收入最高值与收入最低值的比是B.结余最高的月份是月份C.与月份的收入的变化率与至月份的收入的变化率相同D.前个月的平均收入为万元9.在平面直角坐标系xOy中,已知椭圆的右焦点为,若F到直线的距离为,则E的离心率为()A. B. C. D.10.已知数列满足,则()A. B. C. D.11.执行如图所示的程序框图,输出的结果为()A. B.4 C. D.12.已知定义在上的偶函数,当时,,设,则()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知,椭圆的方程为,双曲线方程为,与的离心率之积为,则的渐近线方程为________.14.已知曲线,点,在曲线上,且以为直径的圆的方程是.则_______.15.实数满足,则的最大值为_____.16.有2名老师和3名同学,将他们随机地排成一行,用表示两名老师之间的学生人数,则对应的排法有______种;______;三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知数列满足,,其前n项和为.(1)通过计算,,,猜想并证明数列的通项公式;(2)设数列满足,,,若数列是单调递减数列,求常数t的取值范围.18.(12分)在中,.(Ⅰ)求角的大小;(Ⅱ)若,,求的值.19.(12分)为调研高中生的作文水平.在某市普通高中的某次联考中,参考的文科生与理科生人数之比为,且成绩分布在的范围内,规定分数在50以上(含50)的作文被评为“优秀作文”,按文理科用分层抽样的方法抽取400人的成绩作为样本,得到成绩的频率分布直方图,如图所示.其中构成以2为公比的等比数列.(1)求的值;(2)填写下面列联表,能否在犯错误的概率不超过0.01的情况下认为“获得优秀作文”与“学生的文理科”有关?文科生理科生合计获奖6不获奖合计400(3)将上述调查所得的频率视为概率,现从全市参考学生中,任意抽取2名学生,记“获得优秀作文”的学生人数为,求的分布列及数学期望.附:,其中.0.150.100.050.0250.0100.0050.0012.0722.7063.8415.0246.6357.87910.82820.(12分)已知a,b∈R,设函数f(x)=(I)若b=0,求f(x)的单调区间:(II)当x∈[0,+∞)时,f(x)的最小值为0,求a+5b的最大值.注:21.(12分)某校为了解校园安全教育系列活动的成效,对全校学生进行一次安全意识测试,根据测试成绩评定“合格”、“不合格”两个等级,同时对相应等级进行量化:“合格”记分,“不合格”记分.现随机抽取部分学生的成绩,统计结果及对应的频率分布直方图如下所示:等级不合格合格得分频数624(Ⅰ)若测试的同学中,分数段内女生的人数分别为,完成列联表,并判断:是否有以上的把握认为性别与安全意识有关?是否合格性别不合格合格总计男生女生总计(Ⅱ)用分层抽样的方法,从评定等级为“合格”和“不合格”的学生中,共选取人进行座谈,现再从这人中任选人,记所选人的量化总分为,求的分布列及数学期望;(Ⅲ)某评估机构以指标(,其中表示的方差)来评估该校安全教育活动的成效,若,则认定教育活动是有效的;否则认定教育活动无效,应调整安全教育方案.在(Ⅱ)的条件下,判断该校是否应调整安全教育方案?附表及公式:,其中.22.(10分)如图,四棱锥中,平面平面,若,四边形是平行四边形,且.(Ⅰ)求证:;(Ⅱ)若点在线段上,且平面,,,求二面角的余弦值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】
由等差数列的性质、同角三角函数的关系以及两角和的正弦公式可得,由正弦定理可得,再由余弦定理可得,从而可得结果.【详解】依次成等差数列,,正弦定理得,由余弦定理得,,即依次成等差数列,故选C.【点睛】本题主要考查等差数列的定义、正弦定理、余弦定理,属于难题.解三角形时,有时可用正弦定理,有时也可用余弦定理,应注意用哪一个定理更方便、简捷.如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果遇到的式子中含有角的正弦或边的一次式时,则考虑用正弦定理;以上特征都不明显时,则要考虑两个定理都有可能用到.2、B【解析】
由题意,可设直线的方程为,利用韦达定理判断第一个结论;将代入抛物线的方程可得,,从而,,进而判断第二个结论;设为抛物线的焦点,以线段为直径的圆为,则圆心为线段的中点.设,到准线的距离分别为,,的半径为,点到准线的距离为,显然,,三点不共线,进而判断第三个结论.【详解】解:由题意,可设直线的方程为,代入抛物线的方程,有.设点,的坐标分别为,,则,.所.则直线与直线的斜率乘积为.所以①正确.将代入抛物线的方程可得,,从而,,根据抛物线的对称性可知,,两点关于轴对称,所以直线轴.所以②正确.如图,设为抛物线的焦点,以线段为直径的圆为,则圆心为线段的中点.设,到准线的距离分别为,,的半径为,点到准线的距离为,显然,,三点不共线,则.所以③不正确.故选:B.【点睛】本题主要考查抛物线的定义与几何性质、直线与抛物线的位置关系等基础知识,考查运算求解能力、推理论证能力和创新意识,考查数形结合思想、化归与转化思想,属于难题.3、A【解析】
在中,由余弦定理,得到,再利用即可建立的方程.【详解】由已知,,在中,由余弦定理,得,又,,所以,,故选:A.【点睛】本题考查双曲线离心率的计算问题,处理双曲线离心率问题的关键是建立三者间的关系,本题是一道中档题.4、D【解析】
本道题结合双曲线的性质以及余弦定理,建立关于a与c的等式,计算离心率,即可.【详解】结合题意,绘图,结合双曲线性质可以得到PO=MO,而,结合四边形对角线平分,可得四边形为平行四边形,结合,故对三角形运用余弦定理,得到,而结合,可得,,代入上式子中,得到,结合离心率满足,即可得出,故选D.【点睛】本道题考查了余弦定理以及双曲线的性质,难度偏难.5、D【解析】
结合三视图可知,该几何体的上半部分是半个圆锥,下半部分是一个底面边长为4,高为4的正三棱柱,分别求出体积即可.【详解】由三视图可知该几何体的上半部分是半个圆锥,下半部分是一个底面边长为4,高为4的正三棱柱,则上半部分的半个圆锥的体积,下半部分的正三棱柱的体积,故该几何体的体积.故选:D.【点睛】本题考查三视图,考查空间几何体的体积,考查空间想象能力与运算求解能力,属于中档题.6、B【解析】
设正三棱柱上下底面的中心分别为,底面边长与高分别为,利用,可得,进一步得到侧面积,再利用基本不等式求最值即可.【详解】如图所示.设正三棱柱上下底面的中心分别为,底面边长与高分别为,则,在中,,化为,,,当且仅当时取等号,此时.故选:B.【点睛】本题考查正三棱柱与球的切接问题,涉及到基本不等式求最值,考查学生的计算能力,是一道中档题.7、D【解析】
由图象可以求出周期,得到,根据图象过点可求,根据正弦型函数的性质求出单调增区间即可.【详解】由图象知,所以,,又图象过点,所以,故可取,所以令,解得所以函数的单调递增区间为故选:.【点睛】本题主要考查了三角函数的图象与性质,利用“五点法”求函数解析式,属于中档题.8、D【解析】由图可知,收入最高值为万元,收入最低值为万元,其比是,故项正确;结余最高为月份,为,故项正确;至月份的收入的变化率为至月份的收入的变化率相同,故项正确;前个月的平均收入为万元,故项错误.综上,故选.9、A【解析】
由已知可得到直线的倾斜角为,有,再利用即可解决.【详解】由F到直线的距离为,得直线的倾斜角为,所以,即,解得.故选:A.【点睛】本题考查椭圆离心率的问题,一般求椭圆离心率的问题时,通常是构造关于的方程或不等式,本题是一道容易题.10、C【解析】
利用的前项和求出数列的通项公式,可计算出,然后利用裂项法可求出的值.【详解】.当时,;当时,由,可得,两式相减,可得,故,因为也适合上式,所以.依题意,,故.故选:C.【点睛】本题考查利用求,同时也考查了裂项求和法,考查计算能力,属于中等题.11、A【解析】
模拟执行程序框图,依次写出每次循环得到的的值,当,,退出循环,输出结果.【详解】程序运行过程如下:,;,;,;,;,;,;,,退出循环,输出结果为,故选:A.【点睛】该题考查的是有关程序框图的问题,涉及到的知识点有判断程序框图输出结果,属于基础题目.12、B【解析】
根据偶函数性质,可判断关系;由时,,求得导函数,并构造函数,由进而判断函数在时的单调性,即可比较大小.【详解】为定义在上的偶函数,所以所以;当时,,则,令则,当时,,则在时单调递增,因为,所以,即,则在时单调递增,而,所以,综上可知,即,故选:B.【点睛】本题考查了偶函数的性质应用,由导函数性质判断函数单调性的应用,根据单调性比较大小,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
求出椭圆与双曲线的离心率,根据离心率之积的关系,然后推出关系,即可求解双曲线的渐近线方程.【详解】,椭圆的方程为,的离心率为:,双曲线方程为,的离心率:,与的离心率之积为,,,的渐近线方程为:,即.故答案为:【点睛】本题考查了椭圆、双曲线的几何性质,掌握椭圆、双曲线的离心率公式,属于基础题.14、【解析】
设所在直线方程为设、点坐标分别为,,都在上,代入曲线方程,两式作差可得,从而可得直线的斜率,联立直线与的方程,由,利用弦长公式即可求解.【详解】因为是圆的直径,必过圆心点,设所在直线方程为设、点坐标分别为,,都在上,故两式相减,可得(因为是的中点),即联立直线与的方程:又,即,即又因为,则有即∴.故答案为:【点睛】本题考查了直线与圆锥曲线的位置关系、弦长公式,考查了学生的计算能力,综合性比较强,属于中档题.15、.【解析】
画出可行域,解出可行域的顶点坐标,代入目标函数求出相应的数值,比较大小得到目标函数最值.【详解】解:作出可行域,如图所示,则当直线过点时直线的截距最大,z取最大值.由同理,,取最大值.故答案为:.【点睛】本题考查线性规划的线性目标函数的最优解问题.线性目标函数的最优解一般在平面区域的顶点或边界处取得,所以对于一般的线性规划问题,若可行域是一个封闭的图形,我们可以直接解出可行域的顶点,然后将坐标代入目标函数求出相应的数值,从而确定目标函数的最值;若可行域不是封闭图形还是需要借助截距的几何意义来求最值.16、36;1.【解析】
的可能取值为0,1,2,3,对应的排法有:.分别求出,,,,由此能求出.【详解】解:有2名老师和3名同学,将他们随机地排成一行,用表示两名老师之间的学生人数,则的可能取值为0,1,2,3,对应的排法有:.∴对应的排法有36种;,,,,∴故答案为:36;1.【点睛】本题考查了排列、组合的应用,离散型随机变量的分布列以及数学期望,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1),证明见解析;(2)【解析】
(1)首先利用赋值法求出的值,进一步利用定义求出数列的通项公式;(2)首先利用叠乘法求出数列的通项公式,进一步利用数列的单调性和基本不等式的应用求出参数的范围.【详解】(1)数列满足,,其前项和为.所以,,则,,,所以猜想得:.证明:由于,所以,则:(常数),所以数列是首项为1,公差为的等差数列.所以,整理得.(2)数列满足,,所以,则,所以.则,所以,所以,整理得,由于,所以,即.【点睛】本题考查的知识要点:数列的通项公式的求法及应用,叠乘法的应用,函数的单调性在数列中的应用,基本不等式的应用,主要考察学生的运算能力和转换能力,属于中档题型.18、(1);(2).【解析】试题分析:(1)由正弦定理得到.消去公因式得到所以.进而得到角A;(2)结合三角形的面积公式,和余弦定理得到,联立两式得到.解析:(I)因为,所以,由正弦定理,得.又因为,,所以.又因为,所以.(II)由,得,由余弦定理,得,即,因为,解得.因为,所以.19、(1),,.(2)填表见解析;在犯错误的概率不超过0.01的情况下,不能认为“获得优秀作文”与“学生的文理科”有关(3)详见解析【解析】
(1)根据频率分步直方图和构成以2为公比的等比数列,即可得解;(2)由频率分步直方图算出相应的频数即可填写列联表,再用的计算公式运算即可;(3)获奖的概率为,随机变量,再根据二项分布即可求出其分布列与期望.【详解】解:(1)由频率分布直方图可知,,因为构成以2为公比的等比数列,所以,解得,所以,.故,,.(2)获奖的人数为人,因为参考的文科生与理科生人数之比为,所以400人中文科生的数量为,理科生的数量为.由表可知,获奖的文科生有6人,所以获奖的理科生有人,不获奖的文科生有人.于是可以得到列联表如下:文科生理科生合计获奖61420不获奖74306380合计80320400所以在犯错误的概率不超过0.01的情况下,不能认为“获得优秀作文”与“学生的文理科”有关.(3)由(2)可知,获奖的概率为,的可能取值为0,1,2,,,,分布列如下:012数学期望为.【点睛】本题考查频率分布直方图、统计案例和离散型随机变量的分布列与期望,考查学生的阅读理解能力和计算能力,属于中档题.20、(I)详见解析;(II)2【解析】
(I)求导得到f'(x)=ex-a,讨论a≤0(II)f12=e-12a-5【详解】(I)f(x)=ex-ax当a≤0时,f'(x)=e当a>0时,f'(x)=ex-a=0,x=lna当x∈lna,+∞时,综上所述:a≤0时,fx在R上单调递增;a>0时,fx在-∞,ln(II)f(x)=ex-ax-bf12=现在证明存在a,b,a+5b=2e取a=3e4,b=f'(x)=ex-a-故当x∈0,+∞上时,x2+1f'x在x∈0,+∞上单调递增,故fx在0,12上单调递减,在1综上所述:a+5b的最大值为【点睛】本题考查了函数单调性,函数的最值问题,意在考查学生的计算能力和综合应用能力.21、(Ⅰ)详见解析;(Ⅱ)详见解析;(Ⅲ)不需要调整安全教育方案.【解析】
(I)根据题目所给数据填写好列联表,计算出的值,由此判断出在犯错误概率不超过的前提下,不能认为性别与安全测试是否合格有关.(II)利用超几何分布的计算公式,计算出的分布列并求得数学期望.(III)由(II)中数据,计算出,进而求得的值,从而得出该校的安全教育活动是有效的,不需要调整安全教育方案.【详解】解:(Ⅰ)由频率分布直方图可知,得分在的频率为,故抽取的学生答卷总数为,.性别与合格情况的列联表为:是否合格性别不合格合格小计男生女生小计即在犯错误概率不超过的前提下,不能认为性别
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 急症护理理论与技术
- 2024年二手房产买卖按揭合同3篇
- 杜绝餐饮浪费实施方案的预期效果与评估
- 促进家长与社会对教师的尊重与支持策略
- MCN机构结论与未来发展建议
- 2024年建筑安装承包协议2篇
- 2024定制水电配件及材料买卖协议一
- 护理10s管理总结
- 2024年商业秘密保密合同终止协议3篇
- 2024民事诉讼委托代理合同范本
- 国家开放大学《政治学原理》章节自检自测题参考答案
- 青岛版小学五年级数学上册知识点归纳及易错题
- 园地考点词句段应用 小练笔(素材)部编版语文六年级上册
- 2023-2024学年朝阳市数学六年级第一学期期末综合测试试题含答案
- PEP人教版英语三年级上册 Unit6 Happy birthday 大单元作业设计
- 光伏车棚项目施工方案
- 分布式光伏发电项目施工方案
- 辛寨小学教职工篮球定点投篮比赛记录表
- 数据中心机房工程验收记录表
- 软件项目安装部署手册
- 垃圾收集、清运服务以及安全保障措施
评论
0/150
提交评论