2025届黑龙江省绥棱一中高三第三次测评数学试卷含解析_第1页
2025届黑龙江省绥棱一中高三第三次测评数学试卷含解析_第2页
2025届黑龙江省绥棱一中高三第三次测评数学试卷含解析_第3页
2025届黑龙江省绥棱一中高三第三次测评数学试卷含解析_第4页
2025届黑龙江省绥棱一中高三第三次测评数学试卷含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届黑龙江省绥棱一中高三第三次测评数学试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.对两个变量进行回归分析,给出如下一组样本数据:,,,,下列函数模型中拟合较好的是()A. B. C. D.2.如图所示,正方体ABCD-A1B1C1D1的棱长为1,线段B1D1上有两个动点E、F且EF=,则下列结论中错误的是()A.AC⊥BE B.EF平面ABCDC.三棱锥A-BEF的体积为定值 D.异面直线AE,BF所成的角为定值3.若,则的虚部是()A. B. C. D.4.如图所示,网络纸上小正方形的边长为1,粗线画出的是某四棱锥的三视图,则该几何体的体积为()A.2 B. C.6 D.85.函数且的图象是()A. B.C. D.6.已知复数z满足(i为虚数单位),则z的虚部为()A. B. C.1 D.7.已知函数.下列命题:①函数的图象关于原点对称;②函数是周期函数;③当时,函数取最大值;④函数的图象与函数的图象没有公共点,其中正确命题的序号是()A.①④ B.②③ C.①③④ D.①②④8.如图所示,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的体积是()A. B. C. D.89.已知集合M={x|﹣1<x<2},N={x|x(x+3)≤0},则M∩N=()A.[﹣3,2) B.(﹣3,2) C.(﹣1,0] D.(﹣1,0)10.已知函数,若恒成立,则满足条件的的个数为()A.0 B.1 C.2 D.311.数列满足:,则数列前项的和为A. B. C. D.12.已知函数的定义域为,则函数的定义域为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.在的展开式中,所有的奇数次幂项的系数和为-64,则实数的值为__________.14.某地区连续5天的最低气温(单位:℃)依次为8,,,0,2,则该组数据的标准差为_______.15.割圆术是估算圆周率的科学方法,由三国时期数学家刘徽创立,他用圆内接正多边形面积无限逼近圆面积,从而得出圆周率.现在半径为1的圆内任取一点,则该点取自其内接正十二边形内部的概率为________.16.某城市为了解该市甲、乙两个旅游景点的游客数量情况,随机抽取了这两个景点20天的游客人数,得到如下茎叶图:由此可估计,全年(按360天计算)中,游客人数在内时,甲景点比乙景点多______天.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知各项均为正数的数列的前项和为,且是与的等差中项.(1)证明:为等差数列,并求;(2)设,数列的前项和为,求满足的最小正整数的值.18.(12分)已知函数.(1)讨论的单调性;(2)若,设,证明:,,使.19.(12分)已知椭圆()的半焦距为,原点到经过两点,的直线的距离为.(Ⅰ)求椭圆的离心率;(Ⅱ)如图,是圆的一条直径,若椭圆经过,两点,求椭圆的方程.20.(12分)已知A是抛物线E:y2=2px(p>0)上的一点,以点A和点B(2,0)为直径两端点的圆C交直线x=1于M,N两点.(1)若|MN|=2,求抛物线E的方程;(2)若0<p<1,抛物线E与圆(x﹣5)2+y2=9在x轴上方的交点为P,Q,点G为PQ的中点,O为坐标原点,求直线OG斜率的取值范围.21.(12分)在平面直角坐标系xoy中,曲线C的方程为.以原点O为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为.(1)写出曲线C的极坐标方程,并求出直线l与曲线C的交点M,N的极坐标;(2)设P是椭圆上的动点,求面积的最大值.22.(10分)已知函数.(1)当时.①求函数在处的切线方程;②定义其中,求;(2)当时,设,(为自然对数的底数),若对任意给定的,在上总存在两个不同的,使得成立,求的取值范围.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】

作出四个函数的图象及给出的四个点,观察这四个点在靠近哪个曲线.【详解】如图,作出A,B,C,D中四个函数图象,同时描出题中的四个点,它们在曲线的两侧,与其他三个曲线都离得很远,因此D是正确选项,故选:D.【点睛】本题考查回归分析,拟合曲线包含或靠近样本数据的点越多,说明拟合效果好.2、D【解析】

A.通过线面的垂直关系可证真假;B.根据线面平行可证真假;C.根据三棱锥的体积计算的公式可证真假;D.根据列举特殊情况可证真假.【详解】A.因为,所以平面,又因为平面,所以,故正确;B.因为,所以,且平面,平面,所以平面,故正确;C.因为为定值,到平面的距离为,所以为定值,故正确;D.当,,取为,如下图所示:因为,所以异面直线所成角为,且,当,,取为,如下图所示:因为,所以四边形是平行四边形,所以,所以异面直线所成角为,且,由此可知:异面直线所成角不是定值,故错误.故选:D.【点睛】本题考查立体几何中的综合应用,涉及到线面垂直与线面平行的证明、异面直线所成角以及三棱锥体积的计算,难度较难.注意求解异面直线所成角时,将直线平移至同一平面内.3、D【解析】

通过复数的乘除运算法则化简求解复数为:的形式,即可得到复数的虚部.【详解】由题可知,所以的虚部是1.故选:D.【点睛】本题考查复数的代数形式的混合运算,复数的基本概念,属于基础题.4、A【解析】

先由三视图确定该四棱锥的底面形状,以及四棱锥的高,再由体积公式即可求出结果.【详解】由三视图可知,该四棱锥为斜着放置的四棱锥,四棱锥的底面为直角梯形,上底为1,下底为2,高为2,四棱锥的高为2,所以该四棱锥的体积为.故选A【点睛】本题主要考查几何的三视图,由几何体的三视图先还原几何体,再由体积公式即可求解,属于常考题型.5、B【解析】

先判断函数的奇偶性,再取特殊值,利用零点存在性定理判断函数零点分布情况,即可得解.【详解】由题可知定义域为,,是偶函数,关于轴对称,排除C,D.又,,在必有零点,排除A.故选:B.【点睛】本题考查了函数图象的判断,考查了函数的性质,属于中档题.6、D【解析】

根据复数z满足,利用复数的除法求得,再根据复数的概念求解.【详解】因为复数z满足,所以,所以z的虚部为.故选:D.【点睛】本题主要考查复数的概念及运算,还考查了运算求解的能力,属于基础题.7、A【解析】

根据奇偶性的定义可判断出①正确;由周期函数特点知②错误;函数定义域为,最值点即为极值点,由知③错误;令,在和两种情况下知均无零点,知④正确.【详解】由题意得:定义域为,,为奇函数,图象关于原点对称,①正确;为周期函数,不是周期函数,不是周期函数,②错误;,,不是最值,③错误;令,当时,,,,此时与无交点;当时,,,,此时与无交点;综上所述:与无交点,④正确.故选:.【点睛】本题考查函数与导数知识的综合应用,涉及到函数奇偶性和周期性的判断、函数最值的判断、两函数交点个数问题的求解;本题综合性较强,对于学生的分析和推理能力有较高要求.8、A【解析】

由三视图还原出原几何体,得出几何体的结构特征,然后计算体积.【详解】由三视图知原几何体是一个四棱锥,四棱锥底面是边长为2的正方形,高为2,直观图如图所示,.故选:A.【点睛】本题考查三视图,考查棱锥的体积公式,掌握基本几何体的三视图是解题关键.9、C【解析】

先化简N={x|x(x+3)≤0}={x|-3≤x≤0},再根据M={x|﹣1<x<2},求两集合的交集.【详解】因为N={x|x(x+3)≤0}={x|-3≤x≤0},又因为M={x|﹣1<x<2},所以M∩N={x|﹣1<x≤0}.故选:C【点睛】本题主要考查集合的基本运算,还考查了运算求解的能力,属于基础题.10、C【解析】

由不等式恒成立问题分类讨论:①当,②当,③当,考查方程的解的个数,综合①②③得解.【详解】①当时,,满足题意,②当时,,,,,故不恒成立,③当时,设,,令,得,,得,下面考查方程的解的个数,设(a),则(a)由导数的应用可得:(a)在为减函数,在,为增函数,则(a),即有一解,又,均为增函数,所以存在1个使得成立,综合①②③得:满足条件的的个数是2个,故选:.【点睛】本题考查了不等式恒成立问题及利用导数研究函数的解得个数,重点考查了分类讨论的数学思想方法,属难度较大的题型.11、A【解析】分析:通过对an﹣an+1=2anan+1变形可知,进而可知,利用裂项相消法求和即可.详解:∵,∴,又∵=5,∴,即,∴,∴数列前项的和为,故选A.点睛:裂项相消法是最难把握的求和方法之一,其原因是有时很难找到裂项的方向,突破这一难点的方法是根据式子的结构特点,常见的裂项技巧:(1);(2);(3);(4);此外,需注意裂项之后相消的过程中容易出现丢项或多项的问题,导致计算结果错误.12、A【解析】试题分析:由题意,得,解得,故选A.考点:函数的定义域.二、填空题:本题共4小题,每小题5分,共20分。13、3或-1【解析】

设,分别令、,两式相减即可得,即可得解.【详解】设,令,则①,令,则②,则①-②得,则,解得或.故答案为:3或-1.【点睛】本题考查了二项式定理的应用,考查了运算能力,属于中档题.14、【解析】

先求出这组数据的平均数,再求出这组数据的方差,由此能求出该组数据的标准差.【详解】解:某地区连续5天的最低气温(单位:依次为8,,,0,2,平均数为:,该组数据的方差为:,该组数据的标准差为1.故答案为:1.【点睛】本题考查一组数据据的标准差的求法,考查平均数、方差、标准差的定义等基础知识,考查运算求解能力,属于基础题.15、【解析】

求出圆内接正十二边形的面积和圆的面积,再用几何概型公式求出即可.【详解】半径为1的圆内接正十二边形,可分割为12个顶角为,腰为1的等腰三角形,∴该正十二边形的面积为,根据几何概型公式,该点取自其内接正十二边形的概率为,故答案为:.【点睛】本小题主要考查面积型几何概型的计算,属于基础题.16、72【解析】

根据给定的茎叶图,得到游客人数在内时,甲景点共有7天,乙景点共有3天,进而求得全年中,甲景点比乙景点多的天数,得到答案.【详解】由题意,根据给定的茎叶图可得,在随机抽取了这两个景点20天的游客人数中,游客人数在内时,甲景点共有7天,乙景点共有3天,所以在全年)中,游客人数在内时,甲景点比乙景点多天.故答案为:.【点睛】本题主要考查了茎叶图的应用,其中解答中熟记茎叶图的基本知识,合理推算是解答的关键,着重考查了推理与运算能力,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见解析,(2)最小正整数的值为35.【解析】

(1)由等差中项可知,当时,得,整理后可得,从而证明为等差数列,继而可求.(2),则可求出,令,即可求出的取值范围,进而求出最小值.【详解】解析:(1)由题意可得,当时,,∴,,当时,,整理可得,∴是首项为1,公差为1的等差数列,∴,.(2)由(1)可得,∴,解得,∴最小正整数的值为35.【点睛】本题考查了等差中项,考查了等差数列的定义,考查了与的关系,考查了裂项相消求和.当已知有与的递推关系时,常代入进行整理.证明数列是等差数列时,一般借助数列,即后一项与前一项的差为常数.18、(1)见解析;(2)证明见解析.【解析】

(1),分,,,四种情况讨论即可;(2)问题转化为,利用导数找到与即可证明.【详解】(1).①当时,恒成立,当时,;当时,,所以,在上是减函数,在上是增函数.②当时,,.当时,;当时,;当时,,所以,在上是减函数,在上是增函数,在上是减函数.③当时,,则在上是减函数.④当时,,当时,;当时,;当时,,所以,在上是减函数,在上是增函数,在上是减函数.(2)由题意,得.由(1)知,当,时,,.令,,故在上是减函数,有,所以,从而.,,则,令,显然在上是增函数,且,,所以存在使,且在上是减函数,在上是增函数,,所以,所以,命题成立.【点睛】本题考查利用导数研究函数的单调性以及证明不等式的问题,考查学生逻辑推理能力,是一道较难的题.19、(Ⅰ);(Ⅱ).【解析】试题分析:(1)依题意,由点到直线的距离公式可得,又有,联立可求离心率;(2)由(1)设椭圆方程,再设直线方程,与椭圆方程联立,求得,令,可得,即得椭圆方程.试题解析:(Ⅰ)过点的直线方程为,则原点到直线的距离,由,得,解得离心率.(Ⅱ)由(1)知,椭圆的方程为.依题意,圆心是线段的中点,且.易知,不与轴垂直.设其直线方程为,代入(1)得.设,则,.由,得,解得.从而.于是.由,得,解得.故椭圆的方程为.20、(1).(2)【解析】

(1)设A的坐标为A(x0,y0),由题意可得圆心C的坐标,求出C到直线x=1的距离.由半个弦长,圆心到直线的距离及半径构成直角三角形可得p的值,进而求出抛物线的方程;(2)将抛物线的方程与圆的方程联立可得韦达定理,进而求出中点G的坐标,再求出直线OG的斜率的表达式,换元可得斜率的取值范围.【详解】(1)设A(x0,y0)且y02=2px0,则圆心C(),圆C的直径|AB|,圆心C到直线x=1的距离d=|1|=||,因为|MN|=2,所以()2+d2=()2,即1,y02=2px0,整理可得(2p﹣4)x0=0,所以p=2,所以抛物线的方程为:y2=4x;(2)联立抛物线与圆的方程整理可得x2﹣2(5﹣p)x+16=0,△>0,设P(x1,y1),Q(x2,y2),则x1+x2=2(5﹣p),x1x2=16,所以中点G的横坐标xG=5﹣p,yG(),所以kOG(0<P<1),令t=5﹣p(t∈(4,5)),则kOG(),解得0<kOG,所以直线OG斜率的取值范围(0,).【点睛】本题考查抛物线的性质及直线与抛物线的综合,换元方法的应用,属于中档题.21、(1),,;(2).【解析】

(1)利用公式即可求得曲线的极坐标方程;联立直线和曲线的极坐标方程,即可求得交点

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论