湖北宜昌市示范高中协作体2025届高三第二次诊断性检测数学试卷含解析_第1页
湖北宜昌市示范高中协作体2025届高三第二次诊断性检测数学试卷含解析_第2页
湖北宜昌市示范高中协作体2025届高三第二次诊断性检测数学试卷含解析_第3页
湖北宜昌市示范高中协作体2025届高三第二次诊断性检测数学试卷含解析_第4页
湖北宜昌市示范高中协作体2025届高三第二次诊断性检测数学试卷含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖北宜昌市示范高中协作体2025届高三第二次诊断性检测数学试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设是双曲线的左、右焦点,若双曲线右支上存在一点,使(为坐标原点),且,则双曲线的离心率为()A. B. C. D.2.已知,满足约束条件,则的最大值为A. B. C. D.3.如图所示的程序框图,当其运行结果为31时,则图中判断框①处应填入的是()A. B. C. D.4.已知复数为虚数单位),则z的虚部为()A.2 B. C.4 D.5.若复数满足,则(其中为虚数单位)的最大值为()A.1 B.2 C.3 D.46.已知若在定义域上恒成立,则的取值范围是()A. B. C. D.7.设是两条不同的直线,是两个不同的平面,下列命题中正确的是()A.若,,则 B.若,,则C.若,,则 D.若,,则8.设a,b,c为正数,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不修要条件9.已知函数,,且,则()A.3 B.3或7 C.5 D.5或810.阿基米德(公元前287年—公元前212年),伟大的古希腊哲学家、数学家和物理学家,他死后的墓碑上刻着一个“圆柱容球”的立体几何图形,为纪念他发现“圆柱内切球的体积是圆柱体积的,且球的表面积也是圆柱表面积的”这一完美的结论.已知某圆柱的轴截面为正方形,其表面积为,则该圆柱的内切球体积为()A. B. C. D.11.已知函数,以下结论正确的个数为()①当时,函数的图象的对称中心为;②当时,函数在上为单调递减函数;③若函数在上不单调,则;④当时,在上的最大值为1.A.1 B.2 C.3 D.412.抛物线的焦点为,准线为,,是抛物线上的两个动点,且满足,设线段的中点在上的投影为,则的最大值是()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.如图,在棱长为2的正方体中,点、分别是棱,的中点,是侧面正方形内一点(含边界),若平面,则线段长度的取值范围是______.14.设为偶函数,且当时,;当时,.关于函数的零点,有下列三个命题:①当时,存在实数m,使函数恰有5个不同的零点;②若,函数的零点不超过4个,则;③对,,函数恰有4个不同的零点,且这4个零点可以组成等差数列.其中,正确命题的序号是_______.15.已知向量=(1,2),=(-3,1),则=______.16.电影《厉害了,我的国》于2018年3月正式登陆全国院线,网友纷纷表示,看完电影热血沸腾“我为我的国家骄傲,我为我是中国人骄傲!”《厉害了,我的国》正在召唤我们每一个人,不忘初心,用奋斗书写无悔人生,小明想约甲、乙、丙、丁四位好朋友一同去看《厉害了,我的国》,并把标识为的四张电影票放在编号分别为1,2,3,4的四个不同的盒子里,让四位好朋友进行猜测:甲说:第1个盒子里放的是,第3个盒子里放的是乙说:第2个盒子里放的是,第3个盒子里放的是丙说:第4个盒子里放的是,第2个盒子里放的是丁说:第4个盒子里放的是,第3个盒子里放的是小明说:“四位朋友你们都只说对了一半”可以预测,第4个盒子里放的电影票为_________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)试求曲线y=sinx在矩阵MN变换下的函数解析式,其中M,N.18.(12分)已知函数,.(1)求曲线在点处的切线方程;(2)求函数的单调区间;(3)判断函数的零点个数.19.(12分)已知.(1)若曲线在点处的切线也与曲线相切,求实数的值;(2)试讨论函数零点的个数.20.(12分)在平面直角坐标系中,已知直线l的参数方程为(t为参数),在以坐标原点O为极点,x轴的正半轴为极轴,且与直角坐标系长度单位相同的极坐标系中,曲线C的极坐标方程是.(1)求直线l的普通方程与曲线C的直角坐标方程;(2)若直线l与曲线C相交于两点A,B,求线段的长.21.(12分)已知在平面直角坐标系中,曲线的参数方程为(为参数.).以坐标原点为极点,轴正半轴为极轴建立极坐标系,直线的极坐标方程为,曲线与直线其中的一个交点为,且点极径.极角(1)求曲线的极坐标方程与点的极坐标;(2)已知直线的直角坐标方程为,直线与曲线相交于点(异于原点),求的面积.22.(10分)已知函数,,.函数的导函数在上存在零点.求实数的取值范围;若存在实数,当时,函数在时取得最大值,求正实数的最大值;若直线与曲线和都相切,且在轴上的截距为,求实数的值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】

利用向量运算可得,即,由为的中位线,得到,所以,再根据双曲线定义即可求得离心率.【详解】取的中点,则由得,即;在中,为的中位线,所以,所以;由双曲线定义知,且,所以,解得,故选:D【点睛】本题综合考查向量运算与双曲线的相关性质,难度一般.2、D【解析】

作出不等式组对应的平面区域,利用目标函数的几何意义,利用数形结合即可得到结论.【详解】作出不等式组表示的平面区域如下图中阴影部分所示,等价于,作直线,向上平移,易知当直线经过点时最大,所以,故选D.【点睛】本题主要考查线性规划的应用,利用目标函数的几何意义,结合数形结合的数学思想是解决此类问题的基本方法.3、C【解析】

根据程序框图的运行,循环算出当时,结束运行,总结分析即可得出答案.【详解】由题可知,程序框图的运行结果为31,当时,;当时,;当时,;当时,;当时,.此时输出.故选:C.【点睛】本题考查根据程序框图的循环结构,已知输出结果求条件框,属于基础题.4、A【解析】

对复数进行乘法运算,并计算得到,从而得到虚部为2.【详解】因为,所以z的虚部为2.【点睛】本题考查复数的四则运算及虚部的概念,计算过程要注意.5、B【解析】

根据复数的几何意义可知复数对应的点在以原点为圆心,1为半径的圆上,再根据复数的几何意义即可确定,即可得的最大值.【详解】由知,复数对应的点在以原点为圆心,1为半径的圆上,表示复数对应的点与点间的距离,又复数对应的点所在圆的圆心到的距离为1,所以.故选:B【点睛】本题考查了复数模的定义及其几何意义应用,属于基础题.6、C【解析】

先解不等式,可得出,求出函数的值域,由题意可知,不等式在定义域上恒成立,可得出关于的不等式,即可解得实数的取值范围.【详解】,先解不等式.①当时,由,得,解得,此时;②当时,由,得.所以,不等式的解集为.下面来求函数的值域.当时,,则,此时;当时,,此时.综上所述,函数的值域为,由于在定义域上恒成立,则不等式在定义域上恒成立,所以,,解得.因此,实数的取值范围是.故选:C.【点睛】本题考查利用函数不等式恒成立求参数,同时也考查了分段函数基本性质的应用,考查分类讨论思想的应用,属于中等题.7、C【解析】

在A中,与相交或平行;在B中,或;在C中,由线面垂直的判定定理得;在D中,与平行或.【详解】设是两条不同的直线,是两个不同的平面,则:在A中,若,,则与相交或平行,故A错误;在B中,若,,则或,故B错误;在C中,若,,则由线面垂直的判定定理得,故C正确;在D中,若,,则与平行或,故D错误.故选C.【点睛】本题考查命题真假的判断,考查空间中线线、线面、面面间的位置关系等基础知识,是中档题.8、B【解析】

根据不等式的性质,结合充分条件和必要条件的定义进行判断即可.【详解】解:,,为正数,当,,时,满足,但不成立,即充分性不成立,若,则,即,即,即,成立,即必要性成立,则“”是“”的必要不充分条件,故选:.【点睛】本题主要考查充分条件和必要条件的判断,结合不等式的性质是解决本题的关键.9、B【解析】

根据函数的对称轴以及函数值,可得结果.【详解】函数,若,则的图象关于对称,又,所以或,所以的值是7或3.故选:B.【点睛】本题考查的是三角函数的概念及性质和函数的对称性问题,属基础题10、D【解析】

设圆柱的底面半径为,则其母线长为,由圆柱的表面积求出,代入圆柱的体积公式求出其体积,结合题中的结论即可求出该圆柱的内切球体积.【详解】设圆柱的底面半径为,则其母线长为,因为圆柱的表面积公式为,所以,解得,因为圆柱的体积公式为,所以,由题知,圆柱内切球的体积是圆柱体积的,所以所求圆柱内切球的体积为.故选:D【点睛】本题考查圆柱的轴截面及表面积和体积公式;考查运算求解能力;熟练掌握圆柱的表面积和体积公式是求解本题的关键;属于中档题.11、C【解析】

逐一分析选项,①根据函数的对称中心判断;②利用导数判断函数的单调性;③先求函数的导数,若满足条件,则极值点必在区间;④利用导数求函数在给定区间的最值.【详解】①为奇函数,其图象的对称中心为原点,根据平移知识,函数的图象的对称中心为,正确.②由题意知.因为当时,,又,所以在上恒成立,所以函数在上为单调递减函数,正确.③由题意知,当时,,此时在上为增函数,不合题意,故.令,解得.因为在上不单调,所以在上有解,需,解得,正确.④令,得.根据函数的单调性,在上的最大值只可能为或.因为,,所以最大值为64,结论错误.故选:C【点睛】本题考查利用导数研究函数的单调性,极值,最值,意在考查基本的判断方法,属于基础题型.12、B【解析】

试题分析:设在直线上的投影分别是,则,,又是中点,所以,则,在中,所以,即,所以,故选B.考点:抛物线的性质.【名师点晴】在直线与抛物线的位置关系问题中,涉及到抛物线上的点到焦点的距离,焦点弦长,抛物线上的点到准线(或与准线平行的直线)的距离时,常常考虑用抛物线的定义进行问题的转化.象本题弦的中点到准线的距离首先等于两点到准线距离之和的一半,然后转化为两点到焦点的距离,从而与弦长之间可通过余弦定理建立关系.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】

取中点,连结,,推导出平面平面,从而点在线段上运动,作于,由,能求出线段长度的取值范围.【详解】取中点,连结,,在棱长为2的正方体中,点、分别是棱、的中点,,,,,平面平面,是侧面正方形内一点(含边界),平面,点在线段上运动,在等腰△中,,,作于,由等面积法解得:,,线段长度的取值范围是,.故答案为:,.【点睛】本题考查线段长的取值范围的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.14、①②③【解析】

根据偶函数的图象关于轴对称,利用已知中的条件作出偶函数的图象,利用图象对各个选项进行判断即可.【详解】解:当时又因为为偶函数可画出的图象,如下所示:可知当时有5个不同的零点;故①正确;若,函数的零点不超过4个,即,与的交点不超过4个,时恒成立又当时,在上恒成立在上恒成立由于偶函数的图象,如下所示:直线与图象的公共点不超过个,则,故②正确;对,偶函数的图象,如下所示:,使得直线与恰有4个不同的交点点,且相邻点之间的距离相等,故③正确.故答案为:①②③【点睛】本题考查函数方程思想,数形结合思想,属于难题.15、-6【解析】

由可求,然后根据向量数量积的坐标表示可求.【详解】∵=(1,2),=(-3,1),∴=(-4,-1),则=1×(-4)+2×(-1)=-6故答案为-6【点睛】本题主要考查了向量数量积的坐标表示,属于基础试题.16、A或D【解析】

分别假设每一个人一半是对的,然后分别进行验证即可.【详解】解:假设甲说:第1个盒子里面放的是是对的,则乙说:第3个盒子里面放的是是对的,丙说:第2个盒子里面放的是是对的,丁说:第4个盒子里面放的是是对的,由此可知第4个盒子里面放的是;假设甲说:第3个盒子里面放的是是对的,则丙说:第4个盒子里面放的是是对的,乙说:第2个盒子里面放的是是对的,丁说:第3个盒子里面放的是是对的,由此可知第4个盒子里面放的是.故第4个盒子里面放的电影票为或.故答案为:或【点睛】本题考查简单的合情推理,考查推理论证能力、分析判断能力、归纳总结能力,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、y=2sin2x.【解析】

计算MN,计算得到函数表达式.【详解】∵M,N,∴MN,∴在矩阵MN变换下,→∴曲线y=sinx在矩阵MN变换下的函数解析式为y=2sin2x.【点睛】本题考查了矩阵变换,意在考查学生的计算能力.18、(1)(2)答案见解析(3)答案见解析【解析】

(1)设曲线在点,处的切线的斜率为,可求得,,利用直线的点斜式方程即可求得答案;(2)由(Ⅰ)知,,分时,,三类讨论,即可求得各种情况下的的单调区间为;(3)分与两类讨论,即可判断函数的零点个数.【详解】(1),,设曲线在点,处的切线的斜率为,则,又,曲线在点,处的切线方程为:,即;(2)由(1)知,,故当时,,所以在上单调递增;当时,,;,,;的递减区间为,递增区间为,;当时,同理可得的递增区间为,递减区间为,;综上所述,时,单调递增为,无递减区间;当时,的递减区间为,递增区间为,;当时,的递增区间为,递减区间为,;(3)当时,恒成立,所以无零点;当时,由,得:,只有一个零点.【点睛】本题考查利用导数研究曲线上某点的切线方程,利用导数研究函数的单调性,考查分类讨论思想与推理、运算能力,属于中档题.19、(1)(2)答案不唯一具体见解析【解析】

(1)利用导数的几何意义,设切点的坐标,用不同的方式求出两种切线方程,但两条切线本质为同一条,从而得到方程组,再构造函数研究其最大值,进而求得;(2)对函数进行求导后得,对分三种情况进行一级讨论,即,,,结合函数图象的单调性及零点存在定理,可得函数零点情况.【详解】解:(1)曲线在点处的切线方程为,即.令切线与曲线相切于点,则切线方程为,∴,∴,令,则,记,于是,在上单调递增,在上单调递减,∴,于是,.(2),①当时,恒成立,在上单调递增,且,∴函数在上有且仅有一个零点;②当时,在R上没有零点;③当时,令,则,即函数的增区间是,同理,减区间是,∴.ⅰ)若,则,在上没有零点;ⅱ)若,则有且仅有一个零点;ⅲ)若,则.,令,则,∴当时,单调递增,.∴又∵,∴在R上恰有两个零点,综上所述,当时,函数没有零点;当或时,函数恰有一个零点;当时,恰有两个零点.【点睛】本题考查导数的几何意义、切线方程、零点等知识,求解切线有关问题时,一定要明确切点坐标.以导数为工具,研究函数的图象特征及性质,从而得到函数的零点个数,此时如果用到零点存在定理,必需说明在区间内单调且找到两个端点值的函数值相乘小于0,才算完整的解法.20、(1)l:,C:;(2)【解析】

(1)直接利用转换关系,把参数方程直角坐标方程和极坐标方程之间进行转换;

(2)由(1)可得曲线是圆,求出圆心坐标及半径,再求得圆心到直线的距离,即可求得的长.【详解】(1)由题意可得直线:,由,得,即,所以曲线C:.(2)由(1)知,圆,半径.∴圆心到直线的距离为:.∴【点睛】本题考查直线的普通坐标方程、曲线的直角坐标方程的求法,考查弦长的求法、运算求解能力,是中档题.21、(1)极坐标方程为,点的极坐标为(2)【

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论