2025届内蒙古自治区巴彦淖尔市高三第三次测评数学试卷含解析_第1页
2025届内蒙古自治区巴彦淖尔市高三第三次测评数学试卷含解析_第2页
2025届内蒙古自治区巴彦淖尔市高三第三次测评数学试卷含解析_第3页
2025届内蒙古自治区巴彦淖尔市高三第三次测评数学试卷含解析_第4页
2025届内蒙古自治区巴彦淖尔市高三第三次测评数学试卷含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届内蒙古自治区巴彦淖尔市高三第三次测评数学试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若集合,则=()A. B. C. D.2.已知集合,定义集合,则等于()A. B.C. D.3.要得到函数的图像,只需把函数的图像()A.向左平移个单位 B.向左平移个单位C.向右平移个单位 D.向右平移个单位4.已知某超市2018年12个月的收入与支出数据的折线图如图所示:根据该折线图可知,下列说法错误的是()A.该超市2018年的12个月中的7月份的收益最高B.该超市2018年的12个月中的4月份的收益最低C.该超市2018年1-6月份的总收益低于2018年7-12月份的总收益D.该超市2018年7-12月份的总收益比2018年1-6月份的总收益增长了90万元5.如下的程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入的a,b分别为176,320,则输出的a为()A.16 B.18 C.20 D.156.在平行四边形中,若则()A. B. C. D.7.如图所示,直三棱柱的高为4,底面边长分别是5,12,13,当球与上底面三条棱都相切时球心到下底面距离为8,则球的体积为()A.1605π3 B.6428.若直线与曲线相切,则()A.3 B. C.2 D.9.如果直线与圆相交,则点与圆C的位置关系是()A.点M在圆C上 B.点M在圆C外C.点M在圆C内 D.上述三种情况都有可能10.阅读如图所示的程序框图,运行相应的程序,则输出的结果为()A. B.6 C. D.11.已知锐角满足则()A. B. C. D.12.如图,在平面四边形中,满足,且,沿着把折起,使点到达点的位置,且使,则三棱锥体积的最大值为()A.12 B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.在中,,.若,则_________.14.齐王与田忌赛马,田忌的上等马优于齐王的中等马,劣于齐王的上等马,田忌的中等马优于齐王的下等马,劣于齐王的中等马,田忌的下等马劣于齐王的下等马.现从双方的马匹中随机选一匹进行一场比赛,则田忌的马获胜的概率为__________.15.已知双曲线的左、右焦点分别为为双曲线上任一点,且的最小值为,则该双曲线的离心率是__________.16.正四面体的各个点在平面同侧,各点到平面的距离分别为1,2,3,4,则正四面体的棱长为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知数列满足:对一切成立.(1)求数列的通项公式;(2)求数列的前项和.18.(12分)已知函数.(1)解不等式;(2)若,,,求证:.19.(12分)已知函数.(1)当时,求不等式的解集;(2)若的解集包含,求的取值范围.20.(12分)已知椭圆的右顶点为,为上顶点,点为椭圆上一动点.(1)若,求直线与轴的交点坐标;(2)设为椭圆的右焦点,过点与轴垂直的直线为,的中点为,过点作直线的垂线,垂足为,求证:直线与直线的交点在椭圆上.21.(12分)已知函数,.(1)求的值;(2)令在上最小值为,证明:.22.(10分)已知函数,其中.(1)函数在处的切线与直线垂直,求实数的值;(2)若函数在定义域上有两个极值点,且.①求实数的取值范围;②求证:.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】

求出集合,然后与集合取交集即可.【详解】由题意,,,则,故答案为C.【点睛】本题考查了分式不等式的解法,考查了集合的交集,考查了计算能力,属于基础题.2、C【解析】

根据定义,求出,即可求出结论.【详解】因为集合,所以,则,所以.故选:C.【点睛】本题考查集合的新定义运算,理解新定义是解题的关键,属于基础题.3、A【解析】

运用辅助角公式将两个函数公式进行变形得以及,按四个选项分别对变形,整理后与对比,从而可选出正确答案.【详解】解:.对于A:可得.故选:A.【点睛】本题考查了三角函数图像平移变换,考查了辅助角公式.本题的易错点有两个,一个是混淆了已知函数和目标函数;二是在平移时,忘记乘了自变量前的系数.4、D【解析】

用收入减去支出,求得每月收益,然后对选项逐一分析,由此判断出说法错误的选项.【详解】用收入减去支出,求得每月收益(万元),如下表所示:月份123456789101112收益203020103030604030305030所以月收益最高,A选项说法正确;月收益最低,B选项说法正确;月总收益万元,月总收益万元,所以前个月收益低于后六个月收益,C选项说法正确,后个月收益比前个月收益增长万元,所以D选项说法错误.故选D.【点睛】本小题主要考查图表分析,考查收益的计算方法,属于基础题.5、A【解析】

根据题意可知最后计算的结果为的最大公约数.【详解】输入的a,b分别为,,根据流程图可知最后计算的结果为的最大公约数,按流程图计算,,,,,,,易得176和320的最大公约数为16,故选:A.【点睛】本题考查的是利用更相减损术求两个数的最大公约数,难度较易.6、C【解析】

由,,利用平面向量的数量积运算,先求得利用平行四边形的性质可得结果.【详解】如图所示,

平行四边形中,,

,,,

因为,

所以

,

,所以,故选C.【点睛】本题主要考查向量的几何运算以及平面向量数量积的运算法则,属于中档题.向量的运算有两种方法:(1)平行四边形法则(平行四边形的对角线分别是两向量的和与差);(2)三角形法则(两箭头间向量是差,箭头与箭尾间向量是和).7、A【解析】

设球心为O,三棱柱的上底面ΔA1B1C1的内切圆的圆心为O1,该圆与边B【详解】如图,设三棱柱为ABC-A1B1C所以底面ΔA1B1C1为斜边是A1C1则圆O1的半径为O设球心为O,则由球的几何知识得ΔOO1M所以OM=2即球O的半径为25所以球O的体积为43故选A.【点睛】本题考查与球有关的组合体的问题,解答本题的关键有两个:(1)构造以球半径R、球心到小圆圆心的距离d和小圆半径r为三边的直角三角形,并在此三角形内求出球的半径,这是解决与球有关的问题时常用的方法.(2)若直角三角形的两直角边为a,b,斜边为c,则该直角三角形内切圆的半径r=a+b-c8、A【解析】

设切点为,对求导,得到,从而得到切线的斜率,结合直线方程的点斜式化简得切线方程,联立方程组,求得结果.【详解】设切点为,∵,∴由①得,代入②得,则,,故选A.【点睛】该题考查的是有关直线与曲线相切求参数的问题,涉及到的知识点有导数的几何意义,直线方程的点斜式,属于简单题目.9、B【解析】

根据圆心到直线的距离小于半径可得满足的条件,利用与圆心的距离判断即可.【详解】直线与圆相交,圆心到直线的距离,即.也就是点到圆的圆心的距离大于半径.即点与圆的位置关系是点在圆外.故选:【点睛】本题主要考查直线与圆相交的性质,考查点到直线距离公式的应用,属于中档题.10、D【解析】

用列举法,通过循环过程直接得出与的值,得到时退出循环,即可求得.【详解】执行程序框图,可得,,满足条件,,,满足条件,,,满足条件,,,由题意,此时应该不满足条件,退出循环,输出S的值为.故选D.【点睛】本题主要考查了循环结构的程序框图的应用,正确依次写出每次循环得到的与的值是解题的关键,难度较易.11、C【解析】

利用代入计算即可.【详解】由已知,,因为锐角,所以,,即.故选:C.【点睛】本题考查二倍角的正弦、余弦公式的应用,考查学生的运算能力,是一道基础题.12、C【解析】

过作于,连接,易知,,从而可证平面,进而可知,当最大时,取得最大值,取的中点,可得,再由,求出的最大值即可.【详解】在和中,,所以,则,过作于,连接,显然,则,且,又因为,所以平面,所以,当最大时,取得最大值,取的中点,则,所以,因为,所以点在以为焦点的椭圆上(不在左右顶点),其中长轴长为10,焦距长为8,所以的最大值为椭圆的短轴长的一半,故最大值为,所以最大值为,故的最大值为.故选:C.【点睛】本题考查三棱锥体积的最大值,考查学生的空间想象能力与计算求解能力,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】分析:首先设出相应的直角边长,利用余弦勾股定理得到相应的斜边长,之后应用余弦定理得到直角边长之间的关系,从而应用正切函数的定义,对边比临边,求得对应角的正切值,即可得结果.详解:根据题意,设,则,根据,得,由勾股定理可得,根据余弦定理可得,化简整理得,即,解得,所以,故答案是.点睛:该题考查的是有关解三角形的问题,在解题的过程中,注意分析要求对应角的正切值,需要求谁,而题中所给的条件与对应的结果之间有什么样的连线,设出直角边长,利用所给的角的余弦值,利用余弦定理得到相应的等量关系,求得最后的结果.14、.【解析】分析:由题意结合古典概型计算公式即可求得题中的概率值.详解:由题意可知了,比赛可能的方法有种,其中田忌可获胜的比赛方法有三种:田忌的中等马对齐王的下等马,田忌的上等马对齐王的下等马,田忌的上等马对齐王的中等马,结合古典概型公式可得,田忌的马获胜的概率为.点睛:有关古典概型的概率问题,关键是正确求出基本事件总数和所求事件包含的基本事件数.(1)基本事件总数较少时,用列举法把所有基本事件一一列出时,要做到不重复、不遗漏,可借助“树状图”列举.(2)注意区分排列与组合,以及计数原理的正确使用.15、【解析】

根据双曲线方程,设及,将代入双曲线方程并化简可得,由题意的最小值为,结合平面向量数量积的坐标运算化简,即可求得的值,进而求得离心率即可.【详解】设点,,则,即,∵,,,当时,等号成立,∴,∴,∴.故答案为:.【点睛】本题考查了双曲线与向量的综合应用,由平面向量数量积的最值求离心率,属于中档题.16、【解析】

不妨设点A,D,C,B到面的距离分别为1,2,3,4,平面向下平移两个单位,与正四面体相交,过点D,与AB,AC分别相交于点E,F,根据题意F为中点,E为AB的三等分点(靠近点A),设棱长为a,求得,再用余弦定理求得:,从而求得,再根据顶点A到面EDF的距离为,得到,然后利用等体积法求解,【详解】不妨设点A,D,C,B到面的距离分别为1,2,3,4,平面向下平移两个单位,与正四面体相交,过点D,与AB,AC分别相交于点E,F,如图所示:由题意得:F为中点,E为AB的三等分点(靠近点A),设棱长为a,,顶点D到面ABC的距离为所以,由余弦定理得:,所以,所以,又顶点A到面EDF的距离为,所以,因为,所以,解得,故答案为:【点睛】本题主要考查几何体的切割问题以及等体积法的应用,还考查了转化化归的思想和空间想象,运算求解的能力,属于难题,三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】

(1)先通过求得,再由得,和条件中的式子作差可得答案;(2)变形可得,通过裂项求和法可得答案.【详解】(1)①,当时,,,当时,②,①②得:,,适合,故;(2),.【点睛】本题考查法求数列的通项公式,考查裂项求和,是基础题.18、(1);(2)证明见解析.【解析】

(1)分、、三种情况解不等式,即可得出该不等式的解集;(2)利用分析法可知,要证,即证,只需证明即可,因式分解后,判断差值符号即可,由此证明出所证不等式成立.【详解】(1).当时,由,解得,此时;当时,不成立;当时,由,解得,此时.综上所述,不等式的解集为;(2)要证,即证,因为,,所以,,,.所以,.故所证不等式成立.【点睛】本题考查绝对值不等式的求解,同时也考查了利用分析法和作差法证明不等式,考查分类讨论思想以及推理能力,属于中等题.19、(1);(2).【解析】

(1)对范围分类整理得:,分类解不等式即可.(2)利用已知转化为“当时,”恒成立,利用绝对值不等式的性质可得:,问题得解.【详解】当时,,当时,由得,解得;当时,无解;当时,由得,解得,所以的解集为(2)的解集包含等价于在上恒成立,当时,等价于恒成立,而,∴,故满足条件的的取值范围是【点睛】本题主要考查了含绝对值不等式的解法,还考查了转化能力及绝对值不等式的性质,考查计算能力,属于中档题.20、(1)(2)见解析【解析】

(1)直接求出直线方程,与椭圆方程联立求出点坐标,从而可得直线方程,得其与轴交点坐标;(2)设,则,求出直线和的方程,从而求得两直线的交点坐标,证明此交点在椭圆上,即此点坐标适合椭圆方程.代入验证即可.注意分和说明.【详解】解:本题考查直线与椭圆的位置关系的综合,(1)由题知,,则.因为,所以,则直线的方程为,联立,可得故.则,直线的方程为.令,得,故直线与轴的交点坐标为.(2)证明:因为,,所以.设点,则.设当时,设,则,此时直线与轴垂直,其直线方程为,直线的方程为,即.在方程中,令,得,得交点为,显然在椭圆上.同理当时,交点也在椭圆上.当时,可设直线的方程为,即.直线的方程为,联立方程,消去得,化简并解得.将代入中,化简得.所以两直线的交点为.因为,又因为,所以,则,所以点在椭圆上.综上所述,直线与直线的交点在椭圆上.【点睛】本题考查直线与椭圆相交问题,解题方法是解析几何的基本方程,求出直线方程,解方程组求出交点坐标,代入曲线方程验证点在曲线.本题考查了学生的运算求解能力.21、(1);(2)见解析.【解析】

(1)将转化为对任意恒成立,令,故只需,即可求出的值;(2)由(1)知,可得,令,可证,使得,从而可确定在上单调递减,在上单调递增,进而可得,即,即可证出.【详解】函数的定义域为,因为对任意恒成立,即对任意恒成立,令,则,当时,,故在上单调递增,又,所以当时,,不符合题意;当时,令得,当时,;当时,,所以在上单调递增,在上单调递减,所以,所以要使在时恒成立,则只需,即,令,,所以,当时,;当时,,所以在单调递减,在上单调递增,所以,即,又,所以,故满足条件的的值只有(2)由(1

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论