版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023届江苏苏州高新区一中高三调研考试数学试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.如图,长方体中,,,点T在棱上,若平面.则()A.1 B. C.2 D.2.如图所示,直三棱柱的高为4,底面边长分别是5,12,13,当球与上底面三条棱都相切时球心到下底面距离为8,则球的体积为()A.1605π3 B.6423.设为的两个零点,且的最小值为1,则()A. B. C. D.4.某大学计算机学院的薛教授在2019年人工智能方向招收了6名研究生.薛教授欲从人工智能领域的语音识别、人脸识别,数据分析、机器学习、服务器开发五个方向展开研究,且每个方向均有研究生学习,其中刘泽同学学习人脸识别,则这6名研究生不同的分配方向共有()A.480种 B.360种 C.240种 D.120种5.有一圆柱状有盖铁皮桶(铁皮厚度忽略不计),底面直径为cm,高度为cm,现往里面装直径为cm的球,在能盖住盖子的情况下,最多能装()(附:)A.个 B.个 C.个 D.个6.已知数列中,,若对于任意的,不等式恒成立,则实数的取值范围为()A. B.C. D.7.已知,,,则的最小值为()A. B. C. D.8.函数的定义域为,集合,则()A. B. C. D.9.若与互为共轭复数,则()A.0 B.3 C.-1 D.410.下列图形中,不是三棱柱展开图的是()A. B. C. D.11.过双曲线左焦点的直线交的左支于两点,直线(是坐标原点)交的右支于点,若,且,则的离心率是()A. B. C. D.12.已知F是双曲线(k为常数)的一个焦点,则点F到双曲线C的一条渐近线的距离为()A.2k B.4k C.4 D.2二、填空题:本题共4小题,每小题5分,共20分。13.已知,满足约束条件,则的最大值为________.14.某城市为了解该市甲、乙两个旅游景点的游客数量情况,随机抽取了这两个景点20天的游客人数,得到如下茎叶图:由此可估计,全年(按360天计算)中,游客人数在内时,甲景点比乙景点多______天.15.在平面直角坐标系中,双曲线的一条准线与两条渐近线所围成的三角形的面积为______.16.点在双曲线的右支上,其左、右焦点分别为、,直线与以坐标原点为圆心、为半径的圆相切于点,线段的垂直平分线恰好过点,则该双曲线的渐近线的斜率为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数(1)当时,若恒成立,求的最大值;(2)记的解集为集合A,若,求实数的取值范围.18.(12分)某地为改善旅游环境进行景点改造.如图,将两条平行观光道l1和l2通过一段抛物线形状的栈道AB连通(道路不计宽度),l1和l2所在直线的距离为0.5(百米),对岸堤岸线l3平行于观光道且与l2相距1.5(百米)(其中A为抛物线的顶点,抛物线的对称轴垂直于l3,且交l3于M
),在堤岸线l3上的E,F两处建造建筑物,其中E,F到M的距离为1
(百米),且F恰在B的正对岸(即BF⊥l3).(1)在图②中建立适当的平面直角坐标系,并求栈道AB的方程;(2)游客(视为点P)在栈道AB的何处时,观测EF的视角(∠EPF)最大?请在(1)的坐标系中,写出观测点P的坐标.19.(12分)如图,内接于圆O,AB是圆O的直径,四边形DCBE为平行四边形,平面ABC,,.(1)求证:平面ACD;(2)设,表示三棱锥B-ACE的体积,求函数的解析式及最大值.20.(12分)已知是等腰直角三角形,.分别为的中点,沿将折起,得到如图所示的四棱锥.(Ⅰ)求证:平面平面.(Ⅱ)当三棱锥的体积取最大值时,求平面与平面所成角的正弦值.21.(12分)已知在四棱锥中,平面,,在四边形中,,,,为的中点,连接,为的中点,连接.(1)求证:.(2)求二面角的余弦值.22.(10分)已知函数,.(1)当时,判断是否是函数的极值点,并说明理由;(2)当时,不等式恒成立,求整数的最小值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.D【解析】
根据线面垂直的性质,可知;结合即可证明,进而求得.由线段关系及平面向量数量积定义即可求得.【详解】长方体中,,点T在棱上,若平面.则,则,所以,则,所以,故选:D.【点睛】本题考查了直线与平面垂直的性质应用,平面向量数量积的运算,属于基础题.2.A【解析】
设球心为O,三棱柱的上底面ΔA1B1C1的内切圆的圆心为O1,该圆与边B【详解】如图,设三棱柱为ABC-A1B1C所以底面ΔA1B1C1为斜边是A1C1则圆O1的半径为O设球心为O,则由球的几何知识得ΔOO1M所以OM=2即球O的半径为25所以球O的体积为43故选A.【点睛】本题考查与球有关的组合体的问题,解答本题的关键有两个:(1)构造以球半径R、球心到小圆圆心的距离d和小圆半径r为三边的直角三角形,并在此三角形内求出球的半径,这是解决与球有关的问题时常用的方法.(2)若直角三角形的两直角边为a,b,斜边为c,则该直角三角形内切圆的半径r=a+b-c3.A【解析】
先化简已知得,再根据题意得出f(x)的最小值正周期T为1×2,再求出ω的值.【详解】由题得,设x1,x2为f(x)=2sin(ωx﹣)(ω>0)的两个零点,且的最小值为1,∴=1,解得T=2;∴=2,解得ω=π.故选A.【点睛】本题考查了三角恒等变换和三角函数的图象与性质的应用问题,是基础题.4.B【解析】
将人脸识别方向的人数分成:有人、有人两种情况进行分类讨论,结合捆绑计算出不同的分配方法数.【详解】当人脸识别方向有2人时,有种,当人脸识别方向有1人时,有种,∴共有360种.故选:B【点睛】本小题主要考查简单排列组合问题,考查分类讨论的数学思想方法,属于基础题.5.C【解析】
计算球心连线形成的正四面体相对棱的距离为cm,得到最上层球面上的点距离桶底最远为cm,得到不等式,计算得到答案.【详解】由题意,若要装更多的球,需要让球和铁皮桶侧面相切,且相邻四个球两两相切,这样,相邻的四个球的球心连线构成棱长为cm的正面体,易求正四面体相对棱的距离为cm,每装两个球称为“一层”,这样装层球,则最上层球面上的点距离桶底最远为cm,若想要盖上盖子,则需要满足,解得,所以最多可以装层球,即最多可以装个球.故选:【点睛】本题考查了圆柱和球的综合问题,意在考查学生的空间想象能力和计算能力.6.B【解析】
先根据题意,对原式进行化简可得,然后利用累加法求得,然后不等式恒成立转化为恒成立,再利用函数性质解不等式即可得出答案.【详解】由题,即由累加法可得:即对于任意的,不等式恒成立即令可得且即可得或故选B【点睛】本题主要考查了数列的通项的求法以及函数的性质的运用,属于综合性较强的题目,解题的关键是能够由递推数列求出通项公式和后面的转化函数,属于难题.7.B【解析】,选B8.A【解析】
根据函数定义域得集合,解对数不等式得到集合,然后直接利用交集运算求解.【详解】解:由函数得,解得,即;又,解得,即,则.故选:A.【点睛】本题考查了交集及其运算,考查了函数定义域的求法,是基础题.9.C【解析】
计算,由共轭复数的概念解得即可.【详解】,又由共轭复数概念得:,.故选:C【点睛】本题主要考查了复数的运算,共轭复数的概念.10.C【解析】
根据三棱柱的展开图的可能情况选出选项.【详解】由图可知,ABD选项可以围成三棱柱,C选项不是三棱柱展开图.故选:C【点睛】本小题主要考查三棱柱展开图的判断,属于基础题.11.D【解析】
如图,设双曲线的右焦点为,连接并延长交右支于,连接,设,利用双曲线的几何性质可以得到,,结合、可求离心率.【详解】如图,设双曲线的右焦点为,连接,连接并延长交右支于.因为,故四边形为平行四边形,故.又双曲线为中心对称图形,故.设,则,故,故.因为为直角三角形,故,解得.在中,有,所以.故选:D.【点睛】本题考查双曲线离心率,注意利用双曲线的对称性(中心对称、轴对称)以及双曲线的定义来构造关于的方程,本题属于难题.12.D【解析】
分析可得,再去绝对值化简成标准形式,进而根据双曲线的性质求解即可.【详解】当时,等式不是双曲线的方程;当时,,可化为,可得虚半轴长,所以点F到双曲线C的一条渐近线的距离为2.故选:D【点睛】本题考查双曲线的方程与点到直线的距离.属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13.【解析】
根据题意,画出可行域,将目标函数看成可行域内的点与原点距离的平方,利用图象即可求解.【详解】可行域如图所示,易知当,时,的最大值为.故答案为:9.【点睛】本题考查了利用几何法解决非线性规划问题,属于中档题.14.72【解析】
根据给定的茎叶图,得到游客人数在内时,甲景点共有7天,乙景点共有3天,进而求得全年中,甲景点比乙景点多的天数,得到答案.【详解】由题意,根据给定的茎叶图可得,在随机抽取了这两个景点20天的游客人数中,游客人数在内时,甲景点共有7天,乙景点共有3天,所以在全年)中,游客人数在内时,甲景点比乙景点多天.故答案为:.【点睛】本题主要考查了茎叶图的应用,其中解答中熟记茎叶图的基本知识,合理推算是解答的关键,着重考查了推理与运算能力,属于基础题.15.【解析】
求出双曲线的渐近线方程,求出准线方程,求出三角形的顶点的坐标,然后求解面积.【详解】解:双曲线:双曲线中,,,则双曲线的一条准线方程为,双曲线的渐近线方程为:,可得准线方程与双曲线的两条渐近线所围成的三角形的顶点的坐标,,,,则三角形的面积为.故答案为:【点睛】本题考查双曲线方程的应用,双曲线的简单性质的应用,考查计算能力,属于中档题.16.【解析】如图,是切点,是的中点,因为,所以,又,所以,,又,根据双曲线的定义,有,即,两边平方并化简得,所以,因此.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1);(2)【解析】
(1)当时,由题意得到,令,分类讨论求得函数的最小值,即可求得的最大值.(2)由时,不等式恒成立,转化为在上恒成立,得到,即可求解.【详解】(1)由题意,当时,由,可得,令,则只需,当时,;当时,;当时,;故当时,取得最小值,即的最大值为.(2)依题意,当时,不等式恒成立,即在上恒成立,所以,即,即,解得在上恒成立,则,所以,所示实数的取值范围是.【点睛】本题主要考查了含绝对值的不等式的解法,以及不等式的恒成立问题的求解与应用,着重考查了转化思想,以及推理与计算能力.18.(1)见解析,,x[0,1];(2)P(,)时,视角∠EPF最大.【解析】
(1)以A为原点,l1为x轴,抛物线的对称轴为y轴建系,设出方程,通过点的坐标可求方程;(2)设出的坐标,表示出,利用基本不等式求解的最大值,从而可得观测点P的坐标.【详解】(1)以A为原点,l1为x轴,抛物线的对称轴为y轴建系由题意知:B(1,0.5),设抛物线方程为代入点B得:p=1,故方程为,x[0,1];(2)设P(,),t[0,],作PQ⊥l3于Q,记∠EPQ=,∠FPQ=,,令,,则:,当且仅当即,即,即时取等号;故P(,)时视角∠EPF最大,答:P(,)时,视角∠EPF最大.【点睛】本题主要考查圆锥曲线的实际应用,理解题意,构建合适的模型是求解的关键,涉及最值问题一般利用基本不等式或者导数来进行求解,侧重考查数学运算的核心素养.19.(1)见解析(2),最大值.【解析】
(1)先证明,,故平面ADC.由,即得证;(2)可证明平面ABC,结合条件表示出,利用均值不等式,即得解.【详解】(1)证明:∵四边形DCBE为平行四边形,∴,.∵平面ABC,平面ABC,∴.∵AB是圆O的直径,∴,且,平面ADC,∴平面ADC.∵,∴平面ADC.(2)解∵平面ABC,,∴平面ABC.在中,,.在中,∵,∴,∴,∴.∵,当且仅当,即时取等号,∴当时,体积有最大值.【点睛】本题考查了线面垂直的证明和三棱锥的体积,考查了学生逻辑推理,空间想象,转化划归,数学运算的能力,属于中档题.20.(Ⅰ)见解析.(Ⅱ).【解析】
(I)证明平面得出平面,根据面面垂直的判定定理得到结论;(II)当平面时,棱锥体积最大,建立空间坐标系,计算两平面的法向量,计算法向量的夹角得出答案.【详解】(I)证明:分别为的中点,,又平面平面,又平面平面平面(II),为定值当平面时,三棱锥的体积取最大值以为原点,以为坐标轴建立空间直角坐标系则,设平面的法向量为,则即,令可得平面是平面的一个法向量平面与平面所成角的正弦值为【点睛】本题考查了面面垂直的判定,二面角的计算,关键是能够根据体积的最值确定垂直关系,从而可以建立起空间直角坐标系,利用空间向量法求得二面角,属于中档题.21.(1)见解析;(2)【解析】
(1)连接,证明,得到面,得到
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 劳动通论刘向兵课件
- 2025版高考化学二轮复习 板块1 题型突破4 突破点3
- 2020-2021学年人教部编版语文二年级下册-《蜘蛛开店》教案
- 脑出血开颅术后的护理
- 计算机导论 教案 单元3 计算机软件基础
- 髋部查体课件
- 药用食物概论 第五讲 各论-大枣课件
- 2025年公司元旦颁奖晚会表彰大会模板
- 2024年演出经纪人资格《演出市场政策与经纪实务》考前必刷必练题库500题(含真题、必会题)
- 2024年房地产经纪人《房地产经纪专业基础》考前必刷必练题库500题(含真题、必会题)
- 超市会计核算与财务管理调查报告
- 护理职业生涯规划展示
- 学校教师心理健康工作考核细则
- 汽车4S店延保提升培训
- 传统文化与人文精神
- 2024年上海市奉贤区高三年级上册期末高考与等级考一模政治试卷含答案
- 铁路职业素质全套教学课件
- 技能比赛开幕式闭幕式及裁判工作实施方案
- 电致变色玻璃项目运营方案
- 8.3数学建模活动的主要过程课件-高一上学期数学北师大版
- 03s702型钢筋混凝土排水沟设计图集上传
评论
0/150
提交评论