版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
信号的分析与处理机械工程测试技术(第2版)MechanicalEngineeringTestingTechnology学习导航8.1信号的时域分析(Thetime-domainanalysisforsignal)8.2信号的相关分析(Thecorrelationanalysisforsignal
)8.3信号的频域分析(Thefrequencydomainanalysisforsignal)8.4现代信号分析方法与处理技术(Modernsignalanalysismethodandprocessingtechnology)知识导图4信号分析和信号处理的目的1)剔除信号中的噪声和干扰,即提高信噪比;2)消除测量系统的误差,修正畸变的波形;3)强化、突出有用信息,削弱无用部分;4)将信号加工、处理、变换,以便更容易识别和分析信号的特征,解释被测对象所表现的各种物理现象。
信号的时域描述反映了信号幅值随时间变化的特征;相关分析从时域为在噪声背景下提取有用信息提供了手段;信号的频域描述反映了信号的频率结构和各频率成分的幅值大小;
信号分析信号处理8.1信号的时域分析8.1.1信号的时域统计参数
1、连续信号主要统计参数的计算
(1)均值:(2)均方值:(3)均方根值:(4)方差:(5)标准差:2、离散时间序列主要统计参数的计算(1)离散信号的均值:(2)离散信号的均方值:(3)离散信号的均方根值:(4)离散信号的方差:标准差:8.1信号的时域分析3、时域统计参数的应用
(1)均方根值诊断法 利用系统上某些特征点振动响应的均方根值作为判断故障的依据。 均方根值诊断法可适用于作简谐振动的设备、作周期振动的设备,也可用于作随机振动的设备。测量的参数:低频(几十Hz)时宜测量位移;中频(1000Hz左右)时宜测量速度;高频时宜测量加速度。国际标准协会的ISO2372、ISO2373对回转机械允许的振动级别规定如表8-1所示。
8.1信号的时域分析均方根值诊断法多适用于机器作稳态振动的情况。如果机器振动不平稳可用振幅-时间图诊断法。振幅-时间图诊断法多是测量和记录机器在开机和停机过程中振幅随时间变化过程,根据振幅-时间曲线判断机器故障。例:离心式空压机或其它旋转机械的开机过程。若记录到的振幅A随时间t变化的几种情况如图所示。(2)振幅-时间图诊断法(a)振幅不变,其他设备及地基振动,流体压力脉动或阀门振动。
(b)振幅随开机过程增大,转子失衡,轴承座和基础刚度小,推力轴承损坏等。
(c)开机过程中出现共振。柔性转子,箱体、支座、基础共振。
(d)振幅在开机过程中突然增大,油膜振荡,间隙过小或过盈不足。8.1信号的时域分析8.1.2信号的概率密度函数分析-幅值域分析
8.1信号的时域分析1.概率密度分析概率密度函数提供了随机信号的幅值分布信息,是随机信号的主要特征参数之一。对长度为T的随机信号样本记录,x(t)瞬时幅值落在(x,x+Dx)区间内的总时间为:当样本记录长度T趋于无穷时,将趋于x(t)的幅值落在区间(x,x+Dx)的概率。即:当Dx®0时,可定义概率密度函数为:概率密度函数表示随机信号的瞬时幅值落在指定区间(范围)内的概率。概率分布函数对于任何随机信号均值均方根值标准差
正弦信号正弦加随机噪声
窄带随机信号
宽带随机信号
8.1信号的时域分析2、典型信号的概率密度函数(1)正弦波信号正弦信号
x=Asinωt在均值μx处p(x)最小;在信号的最大、最小幅值处p(x)最大。
8.1信号的时域分析(2)正态分布随机信号概率密度函数
一维高斯概率密度曲线和概率分布曲线
8.1信号的时域分析(3)混有正弦波的高斯噪声的概率密度函数含有正弦信号s(t)=Ssin(2πft+θ)的随机信号x(t)的表达式:其中:n(t)为零均值的高斯随机噪声,其标准差为σn。x(t)的标准差为σs,其概率密度函数表达式为:8.1信号的时域分析8.2.1相关系数 相关指变量之间的线性关系。确定性信号的相关性可用函数关系描述,随机信号的相关性用统计量描述。
8.2信号的相关分析
相关系数由柯西-许瓦兹不等式
所以ρxy≤1。ρxy=±1说明x,y理想地线性相关;ρxy=0表示x,y完全无关。
8.2.2自相关函数分析
1、自相关函数的概念
8.2信号的相关分析
x(t)和
的相关系数:
定义自相关函数
则有
8.2信号的相关分析
信号的性质不同,自相关函数有不同的表达形式。周期信号(功率信号)非周期信号(能量信号)2、自相关函数的性质
1)自相关函数为实偶函数,即Rx(τ)=Rx(-τ)。
8.2信号的相关分析
证明:2)τ值不同,Rx(τ)不同,当τ=0时,Rx(0)的值最大,并等于信号的均方值ψx2。
3)Rx(τ)值的限制范围
8.2信号的相关分析
4)当τ→∞时,x(t)和x(t+τ)之间不存在内在联系,彼此无关,即ρx(τ→∞)→0,Rx(τ→∞)→μx2。若μx=0,则Rx(τ→∞)→0,如图所示。5)周期函数的自相关函数仍为同频率的周期函数。
例
求正弦函数
的自相关函数。解8.2信号的相关分析
令ωt+φ=θ
正弦函数的自相关函数是一个余弦函数,在τ=0时有最大值。它保留了幅值信息和频率信息,但丢失了原正弦函数中的初始相位信息。只要信号中含有周期成分,其自相关函数在τ很大时都不衰减,并具有明显的周期性。不包含周期成分的随机信号,自相关函数随τ的增大趋于零。宽带随机噪声的自相关函数很快衰减到零,窄带随机噪声的衰减较慢。白噪声自相关函数收敛最快,为δ-函数,所含频率为无限多,频带无限宽。8.2信号的相关分析
1、互相关函数的概念互相关函数Rxy(τ)定义:8.2信号的相关分析
8.2.3互相关函数分析
两信号x(t)和y(t)的互相关系数
2、互相关函数的性质
(1)互相关函数是可正、可负的实函数。(2)互相关函数是非偶、非奇函数,并且有Rxy(τ)=Ryx(-τ)。(3)Rxy(τ)的峰值不在τ=0处,其峰值偏离原点的位置τ0反映了两信号时移的大小,相关程度最高。(4)互相关函数的限制范围:
8.2信号的相关分析
(5)两个统计独立的随机信号,当均值为零时,则Rxy(τ)=0。8.2信号的相关分析
因为,将随机信号x(t)和y(t)表示为其均值和波动部分之和的形式
:则有(6)两个不同频率周期信号的互相关函数为零。
(7)周期信号与随机信号的互相关函数为零。例求两个同频率正弦函数的互相关函数:8.2信号的相关分析
可见,两个均值为零且具有相同频率的周期信号,其互相关函数中保留了这两信号的圆频率ω、对应的幅值x0和y0以及相位差值φ的信息,即两同频率的周期信号,才有互相关函数。
8.2.4相关函数的应用
1、自相关函数的应用
自相关函数分析主要用来检测混淆在随机信号的确定性信号。自相关函数的性质,周期信号或任何确定性信号在所有时差τ值上都有自相关函数值,而随机信号当τ足够大以后其自相关函数趋于零(假定为零均值随机信号)。汽车车身振动的自相关分析在汽车车身架处测得的振动加速度时间历程曲线图a及其自相关函数图b。尽管测得信号本身呈现杂乱无章的,混有一定程度的随机干扰,但其自相关函数却有一定的周期性,其周期T约为50ms,说明存在着周期性激励源,其频率f=1/T=20Hz。
8.2信号的相关分析
从强噪声中检测到微弱的正弦信号一个微弱的正弦信号被淹没在强干扰噪声之中,但在自相关函数中,当τ足够大时该正弦信号能清楚地显露出来。在机械等工程应用中自相关分析有一定的使用价值。但一般说来,用它的傅里叶变换(自谱)来解释混在噪声中的周期信号可能更好些。另外,由于自相关函数中丢失了相位信息,这使其应用受到限制。8.2信号的相关分析
2、互相关函数的应用
如果系统是线性的,则滞后的时间可以直接用输入、输出互相关图上峰值的位置来确定。识别、提取混淆在噪声中的信号。根据线性系统的频率保持性,只有和激振频率相同的成分才可能是由激振引起的响应,其它是干扰成分。只要将激励信号和响应信号做互相关处理,就可以得到由激振引起的响应,消除噪声的干扰。(1)相关测速热轧钢带的光经两个透镜聚焦到相距d的光电池,被转换成电信号x(t)和y(t)。调整延迟,使延时等于钢带经过d的时间。读取互相关函数最大值对应的延时τd。钢带速度:v=d/τd8.2信号的相关分析
(2)相关分析在故障诊断中的应用
确定输油管裂损位置
根据互相关函数确定两个传感器1和2信号的时差τm
,即声波从声源到达两个测点的时差,于是,可以确定声源即故障点的位置。8.2信号的相关分析
式中:S——两传感器的中点至漏损处的距离;
V——音响通过管道的传播速度。
(3)传递通道的相关测定
汽车司机座振动传递途径的识别在发动机、司机座、后桥放置三个加速度传感器,将输出并放大的信号进行相关分析,可以看到:发动机与司机座的相关性较差,而后桥与司机座的互相关较大,可以认为司机座的振动主要是由汽车后轮的振动引起的。
8.2信号的相关分析
(4)复杂管路系统振动传递途径的识别:管路系统图中,A点压力正常,B点压力异常。对A、B两点的压力信号做互相关分析,可以比较各传递途径对B点压力的影响。8.2信号的相关分析
(5)相关分析的声学应用
利用相关分析区分不同时间到达的声音。测量墙板隔音性能时,微音器输出信号x2(t)由穿透声和绕射声叠加而成。因为穿透声先到微音器,所以相关图中第一个峰表示穿透声的功率。8.2信号的相关分析
测量墙板的衰减绕射声和穿透声的相关峰32信号的频域描述反映了信号的频率结构和各频率成分的幅值大小;功率谱密度函数、相干函数、倒谱分析则从频域为研究平稳随机过程提供了重要方法。
8.3信号的频域分析8.3信号的频域分析8.3.1功率谱密度函数
1、帕斯瓦尔(Paseval)定理帕斯瓦尔定理:在时域中信号的总能量,等于在频域中信号的总能量8.3信号的频域分析│X(f)│2称为能谱,它是沿频率轴的能量分布密度。
2、功率谱密度函数(简称功率谱)的定义
定义:随机信号x(t)的自功率谱密度函数(简称自谱)8.3信号的频域分析其逆变换为
自相关函数Rx(τ)为实偶函数,Sx(f)亦为实偶函数。Sx(f)中包含着Rx(τ)的全部信息。定义:两个随机信号x(t)和y(t)的互功率谱密度函数(简称互谱)
其逆变换为
互相关函数Rxy(τ)并非偶函数,因此Sxy(f)具有虚、实两部分,同样,Sxy(f)保留了Rxy(τ)的全部信息。3、功率谱密度函数的物理意义
由Sx(f)曲线可知这一总功率是由无数的在不同频率上的功率元Sx(f)df所总合而成的,Sx(f)波形的起伏表示了总功率在各频率处的功率元分布的变化情况,称Sx(f)为随机信号x(t)的功率谱密度函数。用同样的方法,可以解释互谱密度函数Sxy(f)。8.3信号的频域分析自谱Sx(f)和幅值谱X(f)或能谱│X(f)│2之间的关系在整个时间轴上,信号平均功率为
8.3信号的频域分析自功率谱密度函数和幅值谱的关系为
单边谱和双边谱:自功率谱密度函数是偶函数,它的频率范围是(-∞,∞),称双边自功率谱密度函数。它在频率范围(-∞,0)的函数值是其在(0,∞)频率范围函数值的对称映射,因此,可用在f=0~∞范围内Gx(f)=2Sx(f)来表示信号的全部功率谱。把Gx(f)称为x(t)信号的单边功率谱密度函数。4、自功率谱密度Sx(f)与幅值谱的关系
自功率谱密度Sx(f)为自相关函数Rx(τ)的傅里叶变换,故Sx(f)包含着Rx(τ)中的全部信息。自功率谱密度Sx(f)反映信号的频域结构,这与幅值谱│x(f)│相似,但是自功率谱密度所反映的是信号幅值的平方,因此其频域结构特征更为明显。幅值谱和自功率谱8.3信号的频域分析8.3.2功率谱的应用
1、功率谱密度Sx(f)与幅值谱│x(f)│及系统的频率响应函数H(f)的关系若输入为x(t),输出为y(t),系统的频率响应函数为H(f),则有
8.3信号的频域分析其中,H(f)、Y(f)、X(f)均为f
的复函数。
X(f)表示为
X(f)的共轭值为
则有
8.3信号的频域分析对于输入、输出的自功率谱密度与系统频率响应函数的关系:
通过输入、输出自谱的分析,就能得出系统的幅频特性。但这样的谱分析丢失了相位信息,不能得出系统的相频特性。对于单输入、单输出的理想线性系统,可得所得到的H(f)不仅含有幅频特性而且含有相频特性,这是因为互相关函数中包含着相位信息。2、利用互谱排除噪声影响
受到外界干扰测试系统,n1(t)为输入噪声,n2(t)为加于系统中间环节的噪声,n3(t)为加在输出端的噪声。该系统的输出y(t)为
8.3信号的频域分析式中:x′(t)、n1′(t)和n2′(t)分别为系统对x(t)、n1(t)和n2(t)的响应。输入与输出y(t)的互相关函数为
3、功率谱在设备诊断中的应用
汽车变速箱正常工作谱图机器运行不正常时的谱图
增加了9.2Hz和18.4Hz两个谱峰,这两个频率为设备故障的诊断提供了依据。8.3信号的频域分析4、瀑布图
各转速下的功率谱组合为转速——功率谱三维图,称为瀑布图。8.3信号的频域分析两种阶次共振瀑布图5、坎贝尔图
坎贝尔图是在三维谱图的基础上,以谐波阶次为特征的振动旋转信号三维谱图。汽轮发电机组振动的坎贝尔图
8.3信号的频域分析8.3.3相干函数
1、相干函数的定义
8.3信号的频域分析2、相干函数的物理含义
相干函数是在频域内反映两信号相关程度的指标。评价其输入信号与输出信号间的因果性。
线性系统表明:对于一个线性系统,其输出与输入之间的功率谱关系是相干函数为1,这表明输出完全是由输入引起的线性响应。
0<γ2xy(f)<1表明有三种可能性:(1)联系x(t)和y(t)的系统不完全是线性的;(2)系统的输出y(t)是由x(t)和其他干扰信号共同输入所引起的;(3)在输出端有干扰噪声混入。所以γ2xy(f)的数值标志了y(t)由x(t)线性引起响应的程度。
3、相干函数的应用
(1)系统因果性检验(2)鉴别物理结构的不同响应信号间的联系。 柴油机润滑油泵的油压脉动与压油管道振动的两信号的自谱和相干函数。8.3信号的频域分析结论:油管振动的主要原因是油压脉动。8.3.4倒频谱分析及其应用
1、倒频谱的数学描述
倒频谱函数Cp(q)
定义8.3信号的频域分析幅值倒频谱
还可以定义
自相关函数
这种定义与自相关函数相近,变量q与τ在量纲上完全相同。
x(t)的倒频谱
2、倒频谱的应用
(1)分离信息通道对信号的影响在机械状态监测和故障诊断中,所测得的信号,往往是由故障源经系统路径的传输而得到的响应,也就是说它不是原故障点的信号,如欲得到源信号,必须删除传递通道的影响。例在噪声测量时,所测得之信号,不仅有源信号而且混入不同方向反射的回声信号。要提取源信号,须删除回声的干扰信号。8.3信号的频域分析系统的输入为x(t),输出为y(t),脉冲响应函数是h(t),三者的时域关系为
频域的关系为
功率谱的公式
即8.3信号的频域分析图像,源信号为具有明显周期特征的信号,经过系统特性logGh(f)的影响修正,合成而得输出信号logGy(f)。进一步作傅里叶变换,即可得幅值倒频谱低倒频率q1,反映系统的特征;高倒频率q2,反映源信号特性。(2)用倒频谱诊断齿轮故障
调幅信号
8.3信号的频域分析啮合圆频率齿轮偏心随时间变化函数
转轴圆频率齿轮啮合中的拍波及频谱如果频谱图上出现过多的频差,则难以识别,这时,可以使用倒频谱。例如,图中左图为一个减速箱的频谱图,右图为其倒频谱图。从倒谱图可以清楚地看出两个主要频率分量:117.6Hz(8.5ms)和48.8Hz(20.5ms)。
8.3信号的频域分析减速箱频谱和倒频谱图8.4现代信号分析方法与处理技术8.4.1从傅里叶变换到时频分析
全局性的变换能得到的仅是一个有限时间段内的信号8.4现代信号分析方法与处理技术时频分析法按所设计的时频联合函数不同可以分为各种类型:
1.线性时频表示若x(t)=ax1(t)+bx2(t),a、b为常数,而P(t,f)、P1(t,f)、P2(t,f)分别为x(t)、x1(t)、x2(t)的线性时频表示,则P(t,f)=aP1(t,f)+bP2(t,f)
线性时频表示有短时傅里叶变换(STFT)、戈勃(Gabor)展开及小波变换等。2.双线性时频表示
这类时频表示由能量谱或功率谱演化而来,其变换是二次的,也称二次型时频表示。二次型时频表示不满足线性。若x(t)=ax1(t)+bx2(t),P(t,f)、P1(t,f)、P2(t,f)分别为x(t)、x1(t)、x2(t)的二次型时频表示,则有P(t,f)=│a│2P1(t,f)+│b│2P2(t,f)+2Re[abP12(t,f)]式中:最后一项称之干扰项,也称互项,P12(t,f)称为x1(t),x2(t)的互时频表示。在双线性时频表示中,主要有Cohen类双线性时频分布和仿射类双线性时频分布等,而著名的维格纳(Wigner)分布是联结Cohen类分布与仿射类分布的纽带,也是研究较多的一种双线性时频表示。8.4现代信号分析方法与处理技术8.4.2信号分辨率
1.时间分辨率对于信号x(t),其信号能量按时间的密度(分布)函数可记为│x(t)│2,在Δt内的部分能量可记为│x(t)│2Δt,而其信号总能量可以表示为8.4现代信号分析方法与处理技术可以看出,由信号的时间函数表示x(t),可以确切知道每个时间点的能量密度。因此,信号的时间函数表示具有无限的时间分辨率。信号频谱X(f)仅为频率的函数,从X(f)中不能直接得到任何信号能量随时间分布的性状,因此信号频谱函数表示的时间分辨率为零。为描述信号能量随时间分布的性态,可按│x(t)│2来定义信号能量分布的时间中心<t>=t0和持续时间T=Δx=Δt,Δx称信号的时窗半径,t0则称为时窗中心,它们分别满足2.频率分辨率
8.4现代信号分析方法与处理技术对于频谱函数X(f)的信号,其信号能量按频率的密度(分布)函数可记为│X(f)│2,即能量谱密度函数。在Δf内的部分能量可记为│X(f)│2Δf,信号总能量可以表示为由X(f)可以确切知道每个频率点(如f=f
0)的能量密度。因此,信号的频谱函数表示具有无限的频率分辨率。显然,信号的时间函数表示的频率分辨率为零。为描述信号能量随频率分布的性态,可按│X(f)│2来定义信号能量分布的频率中心<f>=f
0和均方根宽带B=ΔX=Δf,Δf称为信号的频窗半径,f
0称为频窗中心,它们分别满足3.不确定性原理
8.4现代信号分析方法与处理技术理想的时频表示方法,希望在时间和频率上都具有无限分辨率,即从信号的时频表示P(t,f)中能确切知道信号能量在(t,f)点的分布,然而这是不可能的。介绍的Heisenberg不确定原理不允许有“某个特定时间和频率点上的能量”概念。不确定性原理:若当│t│→∞时,,则
只有当x(t)是高斯函数,即
时,若要准确求得任何信号在(t,f)处的能量密度,必须测量信号在(t,f)点某一无限小的二维邻域内的能量。这就要求所加的二维窗函数x(t)的Δx和ΔX同时无限小,而据上述定理,这是不可能的。因此,准确表示信号在(t,f)点的能量密度的时频表示是不存在的。所有的时频表示,只能不同程度地近似表示信号在(t,f)处的能量密度,即只同时具有有限的时间分辨率和频率分辨率。
8.4.3瞬时频率
1.瞬时频率的定义具有有限能量的复信号s(t)=A(t)e-φ(t)(A(t)为实函数)。定义s(t)的相位函数φ(t)对时间的导数为s(t)的瞬时频率,即
8.4现代信号分析方法与处理技术s(t)的频窗中心f0满足
瞬时频率按能量时间密度加权平均值为频窗中心,或称平均频率。
(2)解析信号实际信号一般为实信号,其相位函数恒等于零。可定义实信号x(t)对应的复信号s(t)为解析信号s(t)的瞬时频率和平均频率为原实信号的瞬时频率和平均频率。(3)单分量信号
单分量信号是在任意时刻只有一个频率或一个频域窄带的信号。时频分析是采用二维窗函数的方法,将多分量信号分离为单分量信号。8.4.4非平稳随机信号非平稳随机信号是统计特征时变的随机信号。
1.统计特征非平稳随机信号的概率密度p(x,t)是时间的函数。在t=ti点,其概率密度仍满足
定义均值mx(t)、均方值Dx(t)和方差ex2(t)
定义自相关函数和互相关函数
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年生态居住区购置居间合同2篇
- 2024年长沙市望城人民医院高层次卫技人才招聘笔试历年参考题库频考点附带答案
- 2024年长春市和平囊虫病医院高层次卫技人才招聘笔试历年参考题库频考点附带答案
- 武汉2024年湖北武汉大学医院非事业编制人员招聘15人历年参考题库(频考版)含答案解析
- 2024年金桥地段医院高层次卫技人才招聘笔试历年参考题库频考点附带答案
- 在校实习协议书(2篇)
- 垃圾焚烧厂监理合同(2篇)
- 通信设备制造基地工程承包合同
- 临时生产操作工聘用合同
- 舞蹈培训机构招生顾问合同
- 【APP违规收集个人信息的法律问题分析9800字(论文)】
- 商品房预售合同签约证明和预告登记申请书
- 质量管理体系成熟度评估表
- 国际疾病分类肿瘤学专辑第3版应用课件
- 单体调试及试运方案
- 2023-2024学年浙江省杭州市城区数学四年级第一学期期末学业水平测试试题含答案
- 五星级酒店市场调研报告
- 车辆剐蹭私下解决协议书(3篇)
- 网球技术与战术-华东师范大学中国大学mooc课后章节答案期末考试题库2023年
- 2022-2023学年衡水市深州市小升初数学高频考点检测卷含答案
- 现代科学技术概论知到章节答案智慧树2023年成都师范学院
评论
0/150
提交评论