![7.5 三角形的内角和定理 第2课时 数学北师大版八年级上册教案1_第1页](http://file4.renrendoc.com/view14/M08/3D/1C/wKhkGWdY4X6AL9cvAAH0tYOOuZE138.jpg)
![7.5 三角形的内角和定理 第2课时 数学北师大版八年级上册教案1_第2页](http://file4.renrendoc.com/view14/M08/3D/1C/wKhkGWdY4X6AL9cvAAH0tYOOuZE1382.jpg)
![7.5 三角形的内角和定理 第2课时 数学北师大版八年级上册教案1_第3页](http://file4.renrendoc.com/view14/M08/3D/1C/wKhkGWdY4X6AL9cvAAH0tYOOuZE1383.jpg)
![7.5 三角形的内角和定理 第2课时 数学北师大版八年级上册教案1_第4页](http://file4.renrendoc.com/view14/M08/3D/1C/wKhkGWdY4X6AL9cvAAH0tYOOuZE1384.jpg)
![7.5 三角形的内角和定理 第2课时 数学北师大版八年级上册教案1_第5页](http://file4.renrendoc.com/view14/M08/3D/1C/wKhkGWdY4X6AL9cvAAH0tYOOuZE1385.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第七章平行线的证明7.5三角形的内角和定理第2课时教材分教材分析本节是北师大版教材八年级上册第七章《平行线的证明》第五节的内容.通过上一节课的学习,学生对于平行线的判定定理和性质定理以及与平行线相关的简单几何证明是比较熟悉的,他们已经具有初步的几何意识,形成了一定的逻辑思维能力和推理能力.本节课旨在利用平行线的相关知识来证明三角形的内角和定理以及灵活运用这个定理解决相关问题,使学生突破原有的形象思维限制,引入几何证明中的重要方法——添加辅助线法,从而为下一节三角形外角的学习作好铺垫,同时也为以后继续学习几何证明打下良好的基础.因此,本节课的内容在教材编排上起着承上启下的重要作用.教学目标教学目标掌握三角形外角的两条性质;进一步熟悉和掌握证明的步骤、格式、方法、技巧.经历探索与证明的过程,培养学生探索、归纳的能力,一题多解的能力、转化知识并解决问题的能力,发展学生的推理能力.通过在数学活动中进行教学使学生能自主地“做数学”,特别是培养有条理的想象和探索能力,从而做到强化基础,激发学习兴趣.教学重难点教学重难点【教学重点】1.了解并掌握三角形的外角的定义;(重点)2.掌握三角形内角和定理的两个推论,利用这两个推论进行简单的证明和计算.(难点)【教学难点】掌握三角形内角和定理的两个推论,利用这两个推论进行简单的证明和计算.(难点)课前准备课前准备教师准备课件,学生预习课本内容.教学过程教学过程复习回顾活动内容:三角形内角和定理:三角形三个内角和等于1800,△ABC中,∠A+∠B+∠C=180°∠A+∠B+∠C=180°的几种变形:∠A=180°–(∠B+∠C)∠B=180°–(∠A+∠C)∠C=180°–(∠A+∠B)∠A+∠B=180°–∠C∠B+∠C=180°–∠A∠A+∠C=180°–∠B这里的结论,以后可以直接运用.在证明三角形内角和定理时,用到了把△ABC的一边BC延长得到∠ACD,这个角叫做什么角呢?下面我们就给这种角命名,并且来研究它的性质.活动目的:引出三角形外角的概念,并对其进行研究,激发学生学习兴趣.注意事项:教师应在学生充分展示自己的意见之后,有意识地引导学生从三角形的外角的角度进行思考.合作交流,探究新知活动内容:1.三角形的外角定义:三角形的一边与另一边的延长线所组成的角,叫做三角形的外角,结合图形指明外角的特征有三:(1)顶点在三角形的一个顶点上.(2)一条边是三角形的一边.(3)另一条边是三角形某条边的延长线.2.两个推论及其应用由学生探讨三角形外角的性质:问题1:如图,△ABC中,∠A=70°,∠B=60°,∠ACD是△ABC的一个外角,能由∠A、∠B求出∠ACD吗?如果能,∠ACD与∠A、∠B有什么关系?问题2:任意一个△ABC的一个外角∠ACD与∠A、∠B的大小会有什么关系呢?
由学生归纳得出:推论1:三角形的一个外角等于和它不相邻的两个内角的和.推论2:三角形的一个外角大于任何一个和它不相邻的内角.运用新知活动内容:1.已知,如图,在三角形ABC中,AD平分外角∠EAC,∠B=∠C.求证:AD∥BC分析:要证明AD∥BC,只需证明“同位角相等”,即需证明∠DAE=∠B.证明:∵∠EAC=∠B+∠C(三角形的一个外角等于和它不相邻的两个内角的和)∠B=∠C(已知)BACDE∴∠B=BACDE∵AD平分∠EAC(已知)∴∠DAE=∠EAC(角平分线的定义)∴∠DAE=∠B(等量代换)∴AD∥BC(同位角相等,两直线平行)想一想,还有没有其他的证明方法呢?这个题还可以用“内错角相等,两直线平行”来证.证明:∵∠EAC=∠B+∠C(三角形的一个外角等于和它不相邻的两个内角的和)∠B=∠C(已知)∴∠C=∠EAC(等式的性质)∵AD平分∠EAC(已知)∴∠DAC=∠EAC(角平分线的定义)∴∠DAC=∠C(等量代换)∴AD∥BC(内错角相等,两直线平行)还可以用“同旁内角互补,两直线平行”来证.证明:∵∠EAC=∠B+∠C(三角形的一个外角等于和它不相邻的两个内角的和)∠B=∠C(已知)∴∠C=∠EAC(等式的性质)∵AD平分∠EAC(已知)∴∠DAC=∠EAC∴∠DAC=∠C(等量代换)∵∠B+∠BAC+∠C=180°∴∠B+∠BAC+∠DAC=180°即:∠B+∠DAB=180°∴AD∥BC(同旁内角互补,两直线平行)例2已知:如图,P是△ABC内一点,链接PB,PC.求证:∠BPC>∠A.ABCDE1F2例3已知:如图,在三角形ABC中,∠1是它的一个外角,E为边AC上一点,延长BC到D,连接ABCDE1F2证明:∵∠1是△ABC的一个外角(已知)∴∠1>∠ACB(三角形的一个外角大于任何一个和它不相邻的内角)∵∠ACB是△CDE的一个外角(已知)∴∠ACB>∠2(三角形的一个外角大于任何一个和它不相邻的内角)∴∠1>∠2(不等式的性质)四、巩固新知1.已知:如图所示,在△ABC中,外角∠DCA=100°,∠A=45°求:∠B和∠ACB的大小.2.如图,求证:(1)∠BDC>∠A.(2)∠BDC=∠B+∠C+∠A.如果点D在线段BC的另一侧,结论会怎样?[分析]通过学生的探索活动,使学生进一步了解辅助线的作法及重要性,理解掌握三角形的内角和定理及推论.证法一:(1)连接AD,并延长AD,如图,则∠1是△ABD的一个外角,∠2是△ACD的一个外角.∴∠1>∠3∠2>∠4(三角形的一个外角大于任何一个和它不相邻的内角)∴∠1+∠2>∠3+∠4(不等式的性质)即:∠BDC>∠BAC(2)连结AD,并延长AD,如图.则∠1是△ABD的一个外角,∠2是△ACD的一个外角.∴∠1=∠3+∠B∠2=∠4+∠C(三角形的一个外角等于和它不相邻的两个内角的和)∴∠1+∠2=∠3+∠4+∠B+∠C(等式的性质)即:∠BDC=∠B+∠C+∠BAC证法二:(1)延长BD交AC于E(或延长CD交AB于E),如图.则∠BDC是△CDE的一个外角.∴∠BDC>∠DEC.(三角形的一个外角大于任何一个和它不相邻的内角)∵∠DEC是△ABE的一个外角(已作)∴∠DEC>∠A(三角形的一个外角大于任何一个和它不相邻的内角)∴∠BDC>∠A(不等式的性质)(2)延长BD交AC于E,则∠BDC是△DCE的一个外角.∴∠BDC=∠C+∠DEC(三角形的一个外角等于和它不相邻的两个内角的和)∵∠DEC是△ABE的一个外角∴∠DEC=∠A+∠B(三角形的一个外角等于和它不相邻的两个内角的和)∴∠BDC=∠B+∠C+∠BAC(等量代换)变式1如果点D在线段BC的另一侧,结论会怎样呢?变式2如图:在△ABC中,P是∠B、∠C角平分线的交点,∠BPC与∠A有怎样的大小关系?(两内角角平分线)变式3如图:在△ABC中,P是∠B、∠C外角的角平分线的交点,∠BPC与∠A有怎样的大小关系?(两外角角平分线)变式4如图:在△ABC中,P是∠B的角平分线和∠C外角的角平分线的交点,∠BPC与∠A有怎样的大小关系?(一内角角平分线和一外角角平分线)活动目的:让学生接触各种类型的几何证明题,提高逻辑推理能力,培养学生的证明思路,特别是不等关系的证明题,因为学生接触较少,因此更需要加强练习.注意事项:学生对于几何图形中的不等关系的证明比较陌生,因此有必要在证明第2小题中,要引导学生找到一个过渡角∠ACB,由∠1>∠ACB,∠ACB>∠2,再由不等关系的传递性得出∠1>∠2.3.我们知道:“在三角形的每个顶点处各取一个外角,它们的和就是这个三角形的外角和”.(1)三角形的外角和是多少度?(2)如果将三角形三条边都向两边延长,并且在每条线上任取两点连接起来,那么在原三角形外又得到三个新三角形,如图所示,猜想:∠A、∠B、∠C、∠D、∠E、∠F的和是多少?请用(1)的结论证明你的猜想.4.已知:国旗上的正五角星形如
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年全球及中国动态图像分析仪行业头部企业市场占有率及排名调研报告
- 2025年全球及中国自动粉末喷涂系统行业头部企业市场占有率及排名调研报告
- 2025-2030全球可生物降解微胶囊解决方案行业调研及趋势分析报告
- 2025-2030全球生物分析测试行业调研及趋势分析报告
- 2025年全球及中国高压清洗机喷枪行业头部企业市场占有率及排名调研报告
- 幼儿园科学讨论活动概述模块二幼儿园科学探究活动讲解
- 必杀08 第九、十单元 西半球的国家和极地地区(综合题20题)(解析版)
- 猜想02 重难点(70道题25个重难点)【考题猜想】(解析版)
- 2025我国合同法对合同效力的规定
- 合法的房屋租赁合同
- T-GDASE 0042-2024 固定式液压升降装置安全技术规范
- 消防维保服务方案及实施细则
- 保卫管理员培训课件
- 香港朗文4B单词及句子
- 数据中心运维方案
- 运动技能学习与控制课件第五章运动中的中枢控制
- 财务部规范化管理 流程图
- 苏教版2023年小学四年级数学下册教学计划+教学进度表
- 断绝关系协议书范文参考(5篇)
- 量子力学课件1-2章-波函数-定态薛定谔方程
- 最新变态心理学课件
评论
0/150
提交评论