版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
BasicconceptsofPVTcollector
technologies,
applicationsandmarkets
IEASHCTASK60|PVTSYSTEMS
BasicconceptsofPVT
collectortechnologies,
applicationsandmarkets
SHCTask60/ReportD5
Authors:ManuelLämmle,FraunhoferISE,Germany
MaríaHerrando,UniversityofZaragoza,SpainGlenRyan,Sunovate,Australia
Contributors:LaetitiaBrottier,DualSun,France;MatteoChiappa,Solink,Italy;CorrydeKeizer,TNO,
Netherlands;AlejandrodelAmo,Abora,Spain;AlexanderFriedrich,3FSolar,Austria;AntonioGagliano,
UniversitàdiCatania,Italy;JoaoGomes,Solarus,Sweden;AndreasHäberle,HSRHochschulefürTechnikRapperswil,Switzerland;EricHawkins,Speedflex,UK;DannyJonas,UniversitätdesSaarlandes,Germany;KorbinianKramer,FraunhoferISE,Germany;UlrichLeibfried,Consolar,Germany;AlexanderMellor,NakedEnergy,UK;IlijaNasov,CamelSolar,Macedonia;ThomasNoll,easy-tnt,Germany;MarcoPelligrini,
UniversityofBologna,Italy;FernandoPerez,Abora,Spain;MarkusPröll,ZAEBayerne.V.,Germany;NielsRadisch,Ramboll,Denmark;DavidSauter,ZHAW,Switzerland;IonnaisSifnaios,DTU,Denmark;DanjanaTheis,HTWSaar,Germany;DanielZenhäusern,SPF,Switzerland
Date:May1st,2020
ReportnumberD5DOI:10.18777/ieashc-task60-2020-0002
Coverphoto:PVTcollectorsattheNewTownHallFreiburg©ManuelLämmle/FraunhoferISE
ThecontentsofthisreportdonotnecessarilyreflecttheviewpointsorpoliciesoftheInternationalEnergyAgency(IEA)oritsmembercountries,theIEASolarHeatingandCoolingTechnologyCollaboration
Programme(SHCTCP)membersortheparticipatingresearchers.
IEASolarHeatingandCoolingTechnologyCollaborationProgramme(IEASHC)
TheSolarHeatingandCoolingTechnologyCollaborationProgrammewasfoundedin1977asoneofthefirst
multilateraltechnologyinitiatives("ImplementingAgreements")oftheInternationalEnergyAgency.Itsmissionis
“Toenhancecollectiveknowledgeandapplicationofsolarheatingandcoolingthroughinternationalcollaborationtoreachthegoalsetinthevisionofsolarthermalenergymeeting50%oflowtemperatureheatingandcooling
demandby2050.”
ThemembersoftheIEASHCcollaborateonprojects(referredtoasTasks)inthefieldofresearch,development,demonstration(RD&D),andtestmethodsforsolarthermalenergyandsolarbuildings.
ResearchtopicsandtheassociatedTasksinparenthesisinclude:
□SolarSpaceHeatingandWaterHeating(Tasks14,19,26,44,54)
□SolarCooling(Tasks25,38,48,53)
□SolarHeatforIndustrialorAgriculturalProcesses(Tasks29,33,49,62,64)
□SolarDistrictHeating(Tasks7,45,55)
□SolarBuildings/Architecture/UrbanPlanning(Tasks8,11,12,13,20,22,23,28,37,40,41,47,51,52,56,59,63)
□SolarThermal&PV(Tasks16,35,60)
□Daylighting/Lighting(Tasks21,31,50,61)
□Materials/ComponentsforSolarHeatingandCooling(Tasks2,3,6,10,18,27,39)
□Standards,Certification,andTestMethods(Tasks14,24,34,43,57)
□ResourceAssessment(Tasks1,4,5,9,17,36,46)
□StorageofSolarHeat(Tasks7,32,42,58)
InadditiontoourTaskwork,otheractivitiesoftheIEASHCincludeour:
InternationalConferenceonSolarHeatingandCoolingforBuildingsandIndustry
SHCSolarAcademy
SolarHeatWorldwideannualstaticsreport
Collaborationwithsolarthermaltradeassociations
CountryMembers
Australia
France
SouthAfrica
Austria
Germany
Spain
Belgium
Italy
Sweden
Canada
Netherlands
Switzerland
China
Norway
Turkey
Denmark
Portugal
UnitedKingdom
EuropeanCommission
Slovakia
SponsorMembers
EuropeanCopperInstitute
ECREEE
InternationalSolarEnergySociety
PCREEE
CCREEE
RCREEE
EACREEE
SACREEE
FormoreinformationontheIEASHCwork,includingmanyfreepublications,pleasevisit
Preface
TheaimofthisreportistoprovideasummaryofthecurrentstateofthePVTcollectortechnologies,applications,andmarkets.
ThecontentsofthisreporthavebeenusedtoupdateandenhanceaWikipediaarticleonPVTinordertobetterinformonPVTawideaudience.Therefore,themainstructureandsomeliteralfragmentsofthecurrentWikipediaarereused.InsteadofcitingtheliteralfragmentsoftheoldWikipediaarticleinthemaintext,weincludedtheoldarticleinappendixandmarkedthefragmentsthatwerereused.
Contents
Preface iii
Contents iv
1PVTcollectorsandtheirrangeofoperation 1
1.1Introduction 1
1.2PVTmarkets 2
1.3PVTcollectortechnologies 2
1.3.1ClassificationofPVTcollectors 3
1.3.2PVTliquidcollector 4
1.3.3PVTaircollector 4
1.3.4UncoveredPVTcollector(WISC) 5
1.3.5CoveredPVTcollector 5
1.3.6ConcentratingPVTcollector(CPVT) 5
1.4PVTapplicationsbytemperaturerange 6
2AreviewofPVTapplicationsandsystems 8
2.1Solarheatingsystems 8
2.1.1Processheat 8
2.1.2Domestichotwaterheating 8
2.1.3Spaceheating 8
2.1.4Swimmingpool 9
2.1.5Heatpumpsource 9
2.2Solarcoolingandsolarcombinedcoolingheatingandpowersystems 9
2.3Solarindustrialprocesses 10
2.3.1Solarwaterdesalinationandsolarstills 10
2.3.2Agro-Industrialprocesses 10
2.4References 10
3AssessmentofthemarketpotentialofPVTcollectors 14
Appendix1-ExpertsurveyontemperaturerangesforPVTcollectortechnologiesandapplications 15
Appendix2-MarkedversionoftheoriginalWikipediaarticlefrom16.03.2019 18
3.1Introduction 18
3.2Contents 19
3.3PV/Tsystemengineering 19
3.4Systemtypes 19
3.4.1PV/Tliquidcollector 19
3.4.2PV/Taircollector 19
3.4.3PV/Tconcentrator(CPVT) 20
3.5Seealso 20
3.6References 20
Page1
BasicconceptsofPVTcollectortechnologies,applicationsandmarkets
1PVTcollectorsandtheirrangeofoperation
1.1Introduction
Photovoltaicthermalcollectors,typicallyabbreviatedasPVTcollectorsandalsoknownashybridsolarcollectors,hybridphotovoltaicthermalsolarcollectors,PV/Tcollectorsorsolarcogenerationsystems,arepowergenerationtechnologiesthatconvertsolarradiationintousablethermalandelectricalenergy.PVTcollectorscombinephotovoltaicsolarcells,whichconvertsunlightintoelectricity,withasolarthermalcollector,whichtransferstheotherwiseunusedexcessheatfromthePVmoduletoaheattransferfluid.Bycombiningelectricityandheatgenerationwithinthesamecomponent,thesetechnologiescanreachahigheroverallefficiencythansolarphotovoltaic(PV)orsolarthermalalone.1
SignificantresearchhasgoneintodevelopingadiverserangeofPVTtechnologiessincethe1970s.2ThedifferentPVTcollectortechnologiesdiffersubstantiallyintheircollectordesignandheattransferfluidandaddressdifferentapplicationsrangingfromlowtemperatureheatingandcoolinguptohightemperatureheatabove100°C.3
Figure1.14:SchematiccrosssectionofaWISC(Windandinfraredsensitivecollector)PVTcollectorwithsheet-and-tubetypeheatexchangerandrearinsulation:
1-PVmodulecoverglass(e.g.anti-reflective)
2-Encapsulant(e.g.EVA)
3-SolarPVcells
4-Encapsulant(e.g.EVA)
5-Backsheet(e.g.PVF)
6-Heatexchanger(e.g.aluminum,copperorpolymers)
7-Thermalinsulation(e.g.mineralwool),notalwayspresentforWISCcollectors.
1Zenhäusern,Daniel,EvelynBamberger,andAleksisBaggenstos.2017.«PVTWrap-Up:EnergySystemswithPhotovoltaic-ThermalSolarCollectors».Rapperswil,Switzerland:publishedbyEnergieSchweiz.
http://www.spf.ch/fileadmin/daten/publ/PVT_WrapUp_Final_EN.pdf
2Chow,T.T.(2010)."Areviewonphotovoltaic/thermalhybridsolartechnology".AppliedEnergy.87(2):365-379.doi:10.1016/j.apenergy.2009.06.037.
3Zondag,H.A.;Bakker,M.;vanHelden,W.G.J.(2006):PVTRoadmap-AEuropeanguideforthedevelopmentandmarketintroductionofPV-Thermaltechnology.
4ImagebyManuelLämmle-Ownwork,CCBY-SA4.0,
/w/index.php?curid=88267419
Page2
1.2PVTmarkets
PVTcollectorsgeneratesolarheatandelectricitybasicallyfreeofdirectCO2emissionsandarethereforeregardedasapromisingtechnologytosupplyrenewableelectricityandheatand/orcoldtobuildingsandindustrialprocesses.
Heatisthelargestenergyend-use.In2015,theprovisionofheatingforitsuseinbuildings,industrialpurposesandotherapplicationsaccountedforaround52%(205EJ)ofthetotalenergyconsumed.5Ofthis,overhalfwasusedintheindustryandaround46%inthebuildingsector.While72%oftheheatwasprovidedbythedirectcombustionoffossilfuels,only7%ofwasfrommodernrenewablessuchassolarthermal,biofuelorgeothermal.6Thelowgradeheatmarketupto150°Cisestimatedtobe26.8%oftheworldwidefinalenergydemand,whichiscurrentlyservicedbyfossilfuels(gas,oil,andcoal),electricityandrenewableheat.Thisisthesumofindustrydemand7.1%(25.5EJ)7andbuildingdemand19.7%(49.0EJresidentialand13.6EJcommercial)8.
Theelectricitydemandinbuildingsandindustryisexpectedtogrowfurtherduetoongoingelectrificationandsectorcoupling.9Forasignificantreductionofcarbonemissions,itisessentialthatthemajorshareofelectricityissourcedfromrenewableenergysources,suchaswind,solar,biomassandwater.
Themarketforrenewableheatandelectricityisthereforevast,illustratingthemarketpotentialofPVTcollectors.
Thereport“SolarHeatWorldwide”assessedtheglobalmarketofPVTcollectorsin2018.Accordingtotheauthors,thetotalareaofinstalledcollectorsamountedto1.08millionsquaremeters.Uncoveredwatercollectorshadthelargestmarketshare(57%),followedbyaircollectors(41%)andcoveredwatercollectors(2%).ThecountrywiththelargestinstalledcapacitywasFrance(41%),followedbyKorea(26%),China(12%)andGermany(10%).10
1.3PVTcollectortechnologies
PVTcollectorscombinethegenerationofsolarelectricityandheatinasinglecomponent,andthusachieveahigheroverallefficiencyandbetterutilizationofthesolarspectrumthanconventionalPVmodules.
Photovoltaiccellstypicallyreachanelectricalefficiencybetween15%and20%,whilethelargestshareofthesolarspectrum(65%-70%)isconvertedintoheat,increasingthetemperatureofPVmodulesasillustratedinFigure2.PVTcollectors,onthecontrary,areengineeredtotransferheatfromthePVcellstoafluid.Inthisway,thisexcessheatismadeusefulandcanbeutilizedtoheatwaterorasalowtemperaturesourceforheatpumps,forexample.Thus,PVTcollectorsmakebetteruseofthesolarspectrum.1
Byco-generatingsolarelectricityandheatinasinglecomponent,PVTcollectorsincreasethecombinedefficiencyandyieldanoptimizedutilizationofavailablespace.Especiallyindenselypopulatedurbanareas,PVTcollectorsareconsideredapromisingtechnologyforincreasingtheusageofvaluableroofandfacadespace.
Mostphotovoltaiccells(e.g.siliconbased)sufferfromadropinefficiencywithincreasedcelltemperatures.EachKelvinofincreasedcelltemperaturereducestheefficiencyby0.2–0.5%.3RemovingheatfromthePVcellscan
5Collier,Ute(2018),IEAInsightsSeries2018:RenewableHeatPolicies,Figure1,
/download/direct/1030
6Collier,Ute(2018),IEAInsightsSeries2018:RenewableHeatPolicies,Figure2,
/download/direct/1030
7Philibert,Cedric2017,IEARenewableEnergyforIndustryFromgreenenergytogreenmaterialsandfuels,Figure3,
/download/direct/1025?fileName=Insights_series_2017_Renewable_Energy_for_Industry.pdf
8DianaÜrge-Vorsatz,Heatingandcoolingenergytrendsanddriversinbuildings,Figure3,
/10.1016/j.rser.2014.08.039
9IRENA(2019):GlobalEnergyTransformation:ARoadmapto2050(2019Edition).InternationalRenewableEnergyAgency,AbuDhabi.
/-/media/Files/IRENA/Agency/Publication/2019/Apr/IRENA_Global_Energy_Transformation_2019.pdf
.
10Weiss,Werner;Spörk-Dür,Monika(2019):SolarHeatWorldwide-GlobalMarketDevelopmentandTrendsin2018-
DetailedmarketFigures2017,
/Data/Sites/1/publications/Solar-Heat-Worldwide-2019.pdf
.
Page3
BasicconceptsofPVTcollectortechnologies,applicationsandmarkets
thereforelowertheirtemperatureandthusincreasethecells’efficiency.ImprovedPVcelllifetimesareanotherbenefitofloweroperationtemperatures.
ThefunctionandenergeticbenefitofaPVTcollectorcanbedescribedcomprehensivelybyindicatingthe
electricalandthermalgainsinasolarspectrum(Figure1.2).Itisalsoforthisreason,thatIEASHCTask60usesthesolarspectrumaspartofitslogo.
Figure1.2:UtilizationoftheelectromagneticsolarspectrumbyaPVTcollector.11
Figure1.2isbasedontheoriginaldiagrambyDupeyrat(2011)12,whichwasupdatedwithrecentefficiencydataanddetailedopticalmeasurements(compareLämmle(2018)13):
•SolarirradiancerepresentstheglobalAM1.5spectrumaccordingtoASTMG173-03(2012)14withanoverallirradiancedensityofG=1000W/m².
•TheopticallossesarecalculatedbasedonmeasuredreflectanceandtransmittancespectraofaPVmodulewithp-Sisolarcells,solarglassandwithoutanti-reflectivecoating.TheopticalmeasurementswereconductedatFraunhoferISEwithaspectrometerusinganUlbrichtsphere.
•Theelectricitygainsarecalculatedbasedonthemeasurementsofthespectralresponseofac-SisolarcellwithanelectricalefficiencyofηSTC=15%.
•Theheatgainsarecalculatedbasedontheassumptionofathermalefficiencyofηth,0=61%,astypicallyfoundinunglazedorglazedPVTcollectorswithattheoperatingconditionsofTfluid,mean=Tambient.
•Heatlossesaccountfortheremainderofthesolarspectrum,asheatlosses,anditsspectraldistribution,cannotbemeasureddirectly.
Accordingly,thesolarirradiancerepresents100%oftheAM1.5spectrum,opticallossesaccountfor9%,heatlossesfor15%,heatgainsfor61%,andelectricitygainsfor15%.
1.3.1ClassificationofPVTcollectors
11ImagebyManuelLämmle-Ownwork,CCBY-SA4.0,
/w/index.php?curid=87526248
12Dupeyrat,Patrick(2011):ExperimentaldevelopmentandsimulationinvestigationofaPhotovoltaic-Thermalhybridsolarcollector.INSAdeLyon,France.L’InstitutNationaldesSciencesAppliquéesdeLyon.
13Lämmle,Manuel(2018):ThermalmanagementofPVTcollectors-developmentandmodellingofhighlyefficientPVTcollectorswithlow-emissivitycoatingsandoverheatingprotection.In:PhDthesis,FraunhoferISE,INATECHAlbert-Ludwigs-UniversitätFreiburg.DOI:10.6094/UNIFR/16446.
14ASTMG173-03(2012)-StandardTablesforReferenceSolarSpectralIrradiances:DirectNormalandHemisphericalon37°TiltedSurface.
/solar//spectra/am1.5/
Page4
ThereareamultitudeoftechnicalpossibilitiestocombinePVcellsandsolarthermalcollectors.AnumberofPVTcollectorsareavailableascommercialproducts,whichcanbedividedintothefollowingcategoriesaccordingtotheirbasicdesignandheattransferfluid:
•PVTliquidcollector
•PVTaircollector
Inadditiontotheclassificationbyheattransferfluid,PVTcollectorscanalsobecategorizedaccordingtothepresenceofasecondaryglazingtoreduceheatlossesandthepresenceofadevicetoconcentratesolarirradiation.
•UncoveredPVTcollector(WISCPVT)
•CoveredPVTcollector
•ConcentratingPVTcollector(CPVT)
Moreover,PVTcollectorscanbeclassifiedaccordingtotheirdesign,suchascelltechnology,typeoffluid,heatexchangermaterialandgeometry,typeofcontactbetweenfluidandPVmodule,fixationofheatexchanger,orlevelofbuildingintegration(buildingintegratedPVT
(BIPVT)collectors).1,
15
ThedesignandtypeofPVTcollectorsalwaysimpliesacertainadaptiontooperatingtemperatures,applications,andgivingprioritytoeitherheatorelectricitygeneration.Forinstance,operatingthePVTcollectoratlowtemperatureleadstoacoolingeffectofPVcellscomparedtoPVmodulesandthereforeanincreaseofelectricalpower.However,theheatalsohastobeutilizedatlowtemperatures.
ThemaximumoperatingtemperaturesformostPVmodulesarelimitedtolessthanthemaximumcertifiedoperationtemperatures(typically85°C).Nevertheless,twoormoreunitsofthermalenergyaregeneratedforeachunitofelectricalenergy,dependingoncellefficiencyandsystemdesign.
1.3.2PVTliquidcollector
Thebasicwater-cooleddesignuseschannelstodirectfluidflowusingpipingattacheddirectlyorindirectlytothebackofaPVmodule.Inastandardfluid-basedsystem,aworkingfluid,typicallywater,glycolormineraloil,circulatesintheheatexchangerbehindthePVcells.TheheatfromthePVcellsisconductedthroughthemetalandistransferredtotheworkingfluid(presumingthattheworkingfluidiscoolerthantheoperatingtemperatureofthecells).
1.3.3PVTaircollector
Thebasicair-cooleddesignuseseitherahollow,conductivehousingtomountthephotovoltaicpanelsoracontrolledflowofairtotherearfaceofthePVpanel.PVTaircollectorseitherdrawinfreshoutsideairoruseairasacirculatingheattransfermediuminaclosedloop.TheheattransferpropertiesofairarelowerthanthatoftypicallyusedliquidsandthereforerequiresaproportionallyhighermassflowratethananequivalentPVTliquidcollector.Theadvantageisthattheinfrastructurerequiredhaslowercostandcomplexity.
TheheatedairiscirculatedintoabuildingHVACsystemtodeliverthermalenergy.Excessheatgeneratedcanbesimplyventedtotheatmosphere.SomeversionsofthePVTaircollectorcanbeoperatedinawaytocoolthePVpanelstogeneratemoreelectricityandassistwithreducingthermaleffectsonlifetimeperformancedegradation.
AnumberofdifferentconfigurationsofPVTaircollectorsexist,whichvaryinengineeringsophistication.PVTaircollectorconfigurationsrangefromabasicenclosedshallowmetalboxwithanintakeandexhaustuptooptimizedheattransfersurfacesthatachieveuniformpanelheattransferacrossawiderangeofprocessandambientconditions.
PVTaircollectorscanbecarriedoutasuncoveredorcovereddesigns
.1
15L.Brottier(2018).Optimisationbiénergied’unpanneausolairemultifonctionnel:ducapteurauxinstallationsinsitu.Mécanique[physics.med-ph].UniversitéParis-Saclay,2019
.https://tel.archives-ouvertes.fr/tel-02133891
Page5
BasicconceptsofPVTcollectortechnologies,applicationsandmarkets
1.3.4UncoveredPVTcollector(WISC)
UncoveredPVTcollectors,alsodenotedasunglazedorwindand/orinfraredsensitivePVTcollectors(WISC),typicallycompriseofaPVmodulewithaheatexchangerstructureattachedtothebackofthePVmodule.WhilemostPVTcollectorsareprefabricatedunits,someproductsareofferedasheatexchangerstoberetrofittedtooff-the-shelfPVmodules.Inbothcases,agoodandlongtimedurablethermalcontactwithahighheattransfercoefficientbetweenthePVcellsandthefluidisessential.16
TherearsideoftheuncoveredPVTcollectorcanbeequippedwiththermalinsulation(e.g.mineralwoolorfoam)toreduceheatlossesoftheheatedfluid.UninsulatedPVTcollectorsarebeneficialforoperationnearandbelowambienttemperatures.ParticularlyuncoveredPVTcollectorswithincreasedheattransfertoambientairareasuitableheatsourceforheatpumpsystems.Whenthetemperatureintheheatpump’ssourceislowerthantheambient,thefluidcanbeheateduptoambienttemperatureeveninperiodswithoutsunshine.
Accordingly,uncoveredPVTcollectorscanbecategorizedinto:
•UncoveredPVTcollectorwithincreasedheattransfertoambientair
•UncoveredPVTcollectorwithoutrearinsulation
•UncoveredPVTcollectorwithrearinsulation
UncoveredPVTcollectorsarealsousedtoproviderenewablecoolingbydissipatingheatviathePVTcollectortotheambientairorbyutilizingtheradiativecoolingeffect.Indoingso,coldairorwaterisharnessed,whichcanbeutilizedforHVACapplications.
1.3.5CoveredPVTcollector
Covered,orglazedPVTcollectors,featureanadditionalglazing,whichenclosesaninsulatingairlayerbetweenthePVmoduleandthesecondaryglazing.Thisreducesheatlossesandincreasesthethermalefficiency.Moreover,coveredPVTcollectorscanreachsignificantlyhighertemperaturesthanPVmodulesoruncoveredPVTcollectors.Theoperatingtemperaturesmostlydependonthetemperatureoftheworkingfluid.Theaveragefluidtemperaturecanbebetween25°Cinswimmingpoolapplicationsto90°Cinsolarcoolingsystems(Figure3).
CoveredPVTcollectorsresembletheformanddesignofconventionalflatplatecollectorsorevacuatedvacuumtubes.Yet,PVcellsinsteadofspectrally-selectiveabsorbercoatingsabsorbtheincidentsolarirradianceandgenerateanelectricalcurrentinadditiontosolarheat.
Theinsulatingcharacteristicsofthefrontcoverincreasethethermalefficiencyandallowforhigheroperatingtemperatures.However,theadditionalopticalinterfacesincreaseopticalreflectionsandthusreducethegeneratedelectricalpower.Anti-reflectivecoatingsonthefrontglazingcanreducetheadditionalopticallosses.17
1.3.6ConcentratingPVTcollector(CPVT)
Aconcentratorsystemhastheadvantagetoreducethephotovoltaic(PV)cellareaneeded.ThereforeitispossibletousemoreexpensiveandefficientPVcells,e.g.multi-junctionphotovoltaiccells.TheconcentrationofsunlightalsoreducestheamountofhotPV-absorberareaandthereforereducesheatlossestotheambient,whichimprovessignificantlytheefficiencyforhigherapplicationtemperatures.
ConcentratorsystemsoftenrequirereliablecontrolsystemstoaccuratelytrackthesunandtoprotectthePVcellsfromdamagingover-temperatureconditions.However,therearealsostationeryPVTcollectortypesthatusenon-imagingreflectors,suchastheCompoundParabolicConcentrator(CPC),anddonothavetotrackthesun.
16Adam,Mario;Kramer,Korbinian;Fritzsche,Ulrich;Hamberger,Stephan(2014):AbschlussberichtPVT-Norm.Förderkennzeichen01FS12035-„Verbundprojekt:StandardisierungundNormungvonmultifunktionalenPVTSolarkollektoren(PVT-Norm)“.
17Zondag,H.A.(2008):Flat-platePV-Thermalcollectorsandsystems:Areview.In:RenewableandSustainableEnergyReviews12(4),S.891–959.
Page6
Underidealconditions,about75%ofthesun'spowerdirectlyincidentuponsuchsystemscanbegatheredaselectricityandheat.Formoredetails,seethediscussionofCPVTwithinthearticleforconcentratedphotovoltaics.
Alimitationofhigh-concentrator(i.e.HCPVandHCPVT)systemsisthattheymaintaintheirlong-termadvantagesoverconventionalc-Si/mc-Sicollectorsonlyinregionsthatremainconsistentlyfreeofatmosphericaerosolcontaminants(e.g.lightclouds,smog,etc.).Powerproductionisrapidlydegradedbecause1)radiationisreflectedandscatteredoutsideofthesmall(oftenlessthan1°-2°)acceptanceangleofthecollectionoptics,and2)absorptionofspecificcomponentsofthesolarspectrumcausesoneormoreseriesjunctionswithintheMJcellstounderperform.Theshort-termimpactsofsuchpowergenerationirregularitiescanbereducedtosomedegreebyincludingelectricalandthermalstorageinthesystem.
1.4PVTapplicationsbytemperaturerange
TherangeofapplicationsofPVTcollectors,andingeneralsolarthermalcollectors,canbedividedaccordingtotheirtemperaturelevels:18
•lowtemperatureapplicationsupto50°C
•mediumtemperatureapplicationsupto80°C
•hightemperatureapplicationsabove80°C
Lowtemperatureapplicationsincludeheatpumpsystemsandheatingswimmingpoolsorspasupto50°C.PVTcollectorsinheatpumpsystemsacteitheraslowtemperaturesourcefortheheatpumpevaporatororontheloadsidetosupplymediumtemperatureheattoastoragetank.Moreover,regenerationofboreholesandgroundsourceheatexchangersispossible.1UncoveredPVTcollectorswithenhancedair-to-waterheatexchangecanevencomprisetheonlysourceofaheatpumpsystem.IncombinationwithasystemarchitectureallowingtostorecoldproducedwithWISCoraircollectors,alsoairconditioningispossible.
Lowandmediumtemperatureapplicationsforspaceheatinganddomestichotwaterprovisionarefoundinbuildings,withtemperaturesfrom20°Cto80°C.Thetemperaturesofthespecificsystemdependontherequirementsoftheheatsupplysystemfordomestichotwater(e.g.freshwaterstation,temperaturerequirementsforlegionellaprevention)andforspaceheating(e.g.underfloorheating,radiators).Moreover,thePVTcollectorarraycanbedimensionedtocoveronlysmallerfractionsoftheheatdemand(e.g.hotwaterpre-heating),thusreducingoperatingtemperaturesofthePVTcollector.
Processheatincludesadiverserangeofindustrialapplicationswithlowtohightemperaturerequirements(e.g.solarwaterdesalination,solarcooling,orpowergenerationwithconcentratingPVTcollectors).19PVTcollectortechnologiescanbeclusteredaccordingtotheirtemperaturelevelinthesameway:thesuitabilitypertemperaturerangedependsonthePVTcollectordesignandtechnology.Therefore,eachPVTcollectortechnologyfeaturesdifferentoptimaltemperatureranges.
Figure3showstypicaltemperaturerangesofbothPVTapplicationsandcollectortechnologies.20TheoperatingtemperatureofthePVTapplicationsultimatelydefinesthesuitabilityofeachtypeofPVTcollectortechnology.
18KalogirouSA(2014).Solarenergyengineering:processesandsystems.SecondEdition.AcademicPres
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年光敏印垫项目可行性研究报告
- 门窗采购补充合同范例
- 燃气瓶安装合同范例
- 2024至2030年弹簧铰链项目投资价值分析报告
- 陕西青年职业学院《电子商务网页设计与制作》2023-2024学年第一学期期末试卷
- 工地外包合同范例
- 2024年隔栅灯项目可行性研究报告
- 陕西旅游烹饪职业学院《物联网工程》2023-2024学年第一学期期末试卷
- 户外广告特许经营合同范例
- 存储代工合同与委托加工合同范例
- 混合云架构整体设计及应用场景介绍
- 《盘点程序说明会》课件
- 期末素养综合测评卷(二)2024-2025学年鲁教版(五四制)六年级数学上册(解析版)
- 考核19(西餐)试题
- 2024安全生产法解读
- 吉林省长春市(2024年-2025年小学五年级语文)人教版期末考试(上学期)试卷及答案
- 环保创业孵化器服务行业营销策略方案
- 研究生年终总结和展望
- 浙江省杭州市2023-2024学年高二上学期1月期末地理试题 含解析
- 无人机应用与基础操控入门课件
- 国开(贵州)2024年秋《地域文化(专)》形考任务1-2答案
评论
0/150
提交评论