版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
专题07一元一次不等式(组)不等式或组不等式的定义用不等符号连接起来的式子叫不等式不等式的基本性质(1)不等式的两边都加上(或减去)同一个整式,不等号的方向不变(2)不等式的两边都乘(或除以)同一个正数,不等号的方向不变(3)不等式的两边都乘(或除以)同一个负数,不等号的方向改变解法①去分母;②去括号;③移项;④合并同类项;⑤未知数的系数化为1.在①至⑤步的变形中,一定要注意不等号的方向是否需要改变.一元一次不等式组定义一般地,关于同一个未知数的几个一元一次不等式合在一起,就组成一个一元一次不等式组.解法先求出各个不等式的解再确定其公共部分,即为原不等式组的解集。四种基本不等式组的解集不等式组(a<b)解集图示口诀x≥b大大取大x≤a小小取小a≤x≤b大小小大中间找无解大大小小解不了【考点1】不等式(组)的定义【例1】在①;②;③;④;⑤中,属于不等式的有()A.个 B.个 C.个 D.个【例2】(2022·吉林)与2的差不大于0,用不等式表示为(
)A. B. C. D.1.下列选项正确的是(
)A.不是负数,表示为B.不大于3,表示为C.与4的差是负数,表示为D.不等于,表示为2.下列:①1﹣x:②4x+5>0;③x<3;④x2+x﹣1=0,不等式有()个.A.1 B.2 C.3 D.43.(2022·成都市·八年级)某市最高气温是33℃,最低气温是24℃,则该市气温t(℃)的变化范围是(
)A.t>33 B.t≤24 C.24<t<33 D.24≤t≤334.对于不等式4x+7(x-2)>8不是它的解的是(
)A.5 B.4 C.3 D.2【考点2】不等式的基本性质【例3】下列说法不正确的是(
)A.若,则B.若,则C.若,则D.若,则运用不等式的性质注意以下要点:(1)“0”是很特殊的一个数,因此,解答不等式的问题时,应密切关注“0”存在与否,以防掉进“0”的陷阱.(2)不等式的基本性质:①不等式两边加(或减)同一个数(或式子),不等号的方向不变;②不等式两边乘(或除以)同一个正数,不等号的方向不变;③不等式两边乘(或除以)同一个负数,不等号的方向改变.1.(2022·浙江杭州)已知a,b,c,d是实数,若,,则(
)A. B. C. D.2.(2022·江苏宿迁)如果,那么下列不等式正确的是(
)A. B. C. D.3.(2022·湖南湘潭)若,则下列四个选项中一定成立的是(
)A. B. C. D.4.(2022·内蒙古包头)若,则下列不等式中正确的是(
)A. B. C. D.5.(2021·湖南娄底市·八年级期末)由得到的条件是:______0(填“”“”或“”).【考点3】不等式(组)的解集【例4】(2021·四川宜宾市)不等式2x﹣1>1的解集是______.【例5】解不等式组:.确定不等式组解集和特殊解的方法。(1)确定不等式组的解集,可以将各个不等式的解集在数轴表示出来。借助数轴定不等式组的解集(2)求不等式组的特殊解,先要求出不等式组的解集,再在解集中寻求满足条件的解(口决法)。1.(2022·甘肃武威)不等式的解集是()A. B. C. D.2.(2022·浙江嘉兴)不等式3x+1<2x的解在数轴上表示正确的是()A. B.C. D.3.(2020·浙江金华市·八年级期中)不等式组的解集在数轴上表示为()A. B. C. D.4.(2021·广西北海市·八年级期末)解不等式:,并把解集在数轴上表示出来.5.(2021·河南长垣·模拟预测)已知关于x的不等式组为,则这个不等式组的解集为_____.6.(2022·湖南双峰·八年级期末)解不等式组,,并把解集在数轴上表示出来.【考点4】含参不等式(组)【例6】若关于的不等式组恰有2个整数解,且关于,的方程组也有整数解,则所有符合条件的整数的和为(
)A.-10 B.-7 C.-3 D.0【例7】(2022·湖南邵阳)关于的不等式组有且只有三个整数解,则的最大值是(
)A.3 B.4 C.5 D.6确定不等式中某个参数的范围的方法(1)已知的不等式中含有参数m,可以先进行化简,求出不等式组的解集,然后与已知解集比较,求出m的取值范围(2)当一元一次不等式组化简后未知数中含有参数时,可以通过比较已知解集列不等式或列为程来不确定参数的取值范围成值(3)确定不等式中某个参数的范围时常常借助数轴,使数与形有机地结合起来,是解决此类问题的关键1.(2022·山东泰安)已知方程,且关于x的不等式只有4个整数解,那么b的取值范围是(
)A. B. C. D.2.(2022·重庆一中八年级开学考试)若整数m使得关于x的不等式组有且只有三个整数解,且关于x,y的二元一次方程组的解为整数(x,y均为整数),则符合条件的所有m的和为(
)A.27 B.22 C.13 D.93.(2022·重庆)关于x的分式方程的解为正数,且关于y的不等式组的解集为,则所有满足条件的整数a的值之和是(
)A.13 B.15 C.18 D.204.(2021·山东菏泽市·中考真题)如果不等式组的解集为,那么的取值范围是()A. B. C. D.5.(2021·内蒙古呼和浩特市·中考真题)已知关于x的不等式组无实数解,则a的取值范围是()A. B. C. D.6.(2022·黑龙江绥化)不等式组的解集为,则m的取值范围为_______.7.(2022·四川达州)关于x的不等式组恰有3个整数解,则a的取值范围是_______.【考点5】不等式的运用:方案【例8】为缓解并最终解决能源的供需矛盾,改善日益严峻的环境状况,我国大力提倡发展新能源.新能源汽车市场发展迅猛,国家不仅在购买新能源车方面有补贴,而且还有免缴购置税等利好政策.某汽车租赁公司准备购买、两种型号的新能源汽车10辆.新能源汽车厂商提供了如下两种购买方案:方案汽车数量(单位:辆)总费用(单位:万元)第一种购买方案64170第二种购买方案82160(1)、两种型号的新能源汽车每辆的价格各是多少万元?(2)为了支持新能源汽车产业的发展,国家对新能源汽车发放一定的补贴.已知国家对、两种型号的新能源汽车补贴资金分别为每辆3万元和4万元.通过测算,该汽车租赁公司在此次购车过程中,可以获得国家补贴资金不少于34万元,公司需要支付资金不超过145万元,请你通过计算求出有几种购买方案.【例9】成都市某在建地铁工程需要将一批水泥运送到施工现场,现有甲、乙两种货车可以租用.已知2辆甲种货车和3辆乙种货车一次可运送46吨水泥,1辆甲种货车和2辆乙种货车一次可运送28吨水泥.(1)求每辆甲种货车和每辆乙种货车一次分别能装运多少吨水泥?(2)已知甲种货车每辆租金为450元,乙种货车每辆租金为400元,现租用甲、乙共9辆货车.请求出租用货车的总费用(元)与租用甲种货车的数量(辆)之间的函数关系式.(3)在(2)的条件下,为了保障能拉完这批水泥,发现甲种货车不少于5辆,请你为该企业设计如何租车费用最少?并求出最少费用是多少元?1.(2022·四川遂宁)某中学为落实《教育部办公厅关于进一步加强中小学生体质管理的通知》文件要求,决定增设篮球、足球两门选修课程,需要购进一批篮球和足球.已知购买2个篮球和3个足球共需费用510元;购买3个篮球和5个足球共需费用810元.(1)求篮球和足球的单价分别是多少元;(2)学校计划采购篮球、足球共50个,并要求篮球不少于30个,且总费用不超过5500元.那么有哪几种购买方案?2.雅安地震发生后,全国人民抗震救灾,众志成城,值地震发生一周年之际,某地政府又筹集了重建家园的必需物资120吨打算运往灾区,现有甲、乙、丙三种车型供选择,每辆车的运载能力和运费如下表所示:(假设每辆车均满载)车型甲乙丙汽车运载量(吨/辆)5810汽车运费(元/辆)400500600(1)全部物资可用甲型车8辆,乙型车5辆,丙型车辆来运送.(2)若全部物资都用甲、乙两种车型来运送,需运费8200元,问分别需甲、乙两种车型各几辆?(3)已知三种车的总辆数为14辆,你有哪几种安排方案刚好运完?哪种运费最省?3.(2022·湖南洪江·八年级期末)某农谷生态园响应国家发展有机农业政策,大力种植有机蔬菜,某超市看好甲、乙两种有机蔬菜的市场价值,经调查甲种蔬菜进价每千克m元,售价每千克16元;乙种蔬菜进价每千克n元,售价每千克18元.(1)该超市购进甲种蔬菜15千克和乙种蔬菜20千克需要430元;购进甲种蔬菜10千克和乙种蔬菜8千克需要212元,求m,n的值.(2)该超市决定每天购进甲、乙两种蔬菜共100千克,且投入资金不少于1160元又不多于1168元,设购买甲种蔬菜x千克(x正整数),求有哪几种购买方案.4.(2021·山东庆云·八年级期末)为了净化空气,美化校园环境,某学校计划种植,两种树木.已知购买棵种树木和棵种树木共花费元;购买棵种树木和棵种树木共花费元.(1)求,两种树木的单价分别为多少元(2)如果购买种树木有优惠,优惠方案是:购买种树木超过棵时,超出部分可以享受八折优惠.若该学校购买(,且为整数)棵种树木花费元,求与之间的函数关系式.(3)在(2)的条件下,该学校决定在,两种树木中购买其中一种,且数量超过棵,请你帮助该学校判断选择购买哪种树本更省钱.【考点6】不等式的运用:最大利润【例10】(2022·山东泰安)某电子商品经销店欲购进A、B两种平板电脑,若用9000元购进A种平板电脑12台,B种平板电脑3台;也可以用9000元购进A种平板电脑6台,B种平板电脑6台.(1)求A、B两种平板电脑的进价分别为多少元?(2)考虑到平板电脑需求不断增加,该商城准备投入3万元再购进一批两种规格的平板电脑,已知A型平板电脑售价为700元/台,B型平板电脑售价为1300元/台.根据销售经验,A型平板电脑不少于B型平板电脑的2倍,但不超过B型平板电脑的2.8倍.假设所进平板电脑全部售完,为使利润最大,该商城应如何进货?【例11】(2022·江苏苏州)某水果店经销甲、乙两种水果,两次购进水果的情况如下表所示:进货批次甲种水果质量(单位:千克)乙种水果质量(单位:千克)总费用(单位:元)第一次60401520第二次30501360求甲、乙两种水果的进价;销售完前两次购进的水果后,该水果店决定回馈顾客,开展促销活动.第三次购进甲、乙两种水果共200千克,且投入的资金不超过3360元.将其中的m千克甲种水果和3m千克乙种水果按进价销售,剩余的甲种水果以每千克17元、乙种水果以每千克30元的价格销售.若第三次购进的200千克水果全部售出后,获得的最大利润不低于800元,求正整数m的最大值.1.(2022·四川凉山)为全面贯彻党的教育方针,严格落实教育部对中小学生“五项管理”的相关要求和《关于进一步加强中小学生体质健康管理工作的通知》精神,保障学生每天在校1小时体育活动时间,某班计划采购A、B两种类型的羽毛球拍,已知购买3副A型羽毛球拍和4副B型羽毛球拍共需248元;购买5副A型羽毛球拍和2副B型羽毛球拍共需264元.(1)求A、B两种类型羽毛球拍的单价.(2)该班准备采购A、B两种类型的羽毛球拍共30副,且A型羽毛球拍的数量不少于B型羽毛球拍数量的2倍,请给出最省钱的购买方案,求出最少费用,并说明理由.2.(2022·四川泸州)某经销商计划购进,两种农产品.已知购进种农产品2件,种农产品3件,共需690元;购进种农产品1件,种农产品4件,共需720元.(1),两种农产品每件的价格分别是多少元?(2)该经销商计划用不超过5400元购进,两种农产品共40件,且种农产品的件数不超过B种农产品件数的3倍.如果该经销商将购进
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2021高考语文总复习专题检测:15-论述类文章阅读一
- 【先学后教新思路】2020高考物理一轮复习-教案47-电容器与电容-带电粒子在电场中的运动
- 陕西省渭南市尚德中学2024-2025学年高一上学期第一次阶段性地理试卷(含答案)
- 吉林省松原市前郭五中2024~2025学年高一上期末考试 化学(含答题卡、答案)
- 《病患投诉处理技巧》课件
- 河北省唐山市2025届高三上学期1月期末考试数学试题(含答案)
- 浙江省杭州临平2023-2024学年第二学期期中检测卷 六年级下册科学
- 【同步备课】2020年高中物理学案(新人教必修二)7.9《实验:验证机械能守恒定律》5
- 《传统批发业重组》课件
- 【全程复习方略】2020年高考化学课时提升作业(四)-2.2-离子反应(人教版-四川专供)
- 县级综治中心等级评定细则、申报表、负面清单、流程图
- 行政强制法讲座-PPT课件
- 2022年新媒体编辑实战教程测试题及答案(题库)
- 岗位现场应急处置方案卡全套(全套20页)
- 清华大学宝玉石鉴赏标准答案
- 凉席竹片铣槽机(课程设计)
- 高压线防护搭设方案
- 中西医结合科工作制度、规章制度、岗位制度与说明书
- 综合机械化固体充填采煤技术要求-编制说明
- 十人联名推荐表
- 七、分蛋糕博弈
评论
0/150
提交评论