版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
人教版九年级上册数学期末考试试题一、选择题。(每小题只有一个正确答案)1.方程的解为()A.B.C.,D.,2.下列图形中,既是轴对称图形又是中心对称图形的是()A.平行四边形 B.菱形 C.等边三角形 D.等腰直角三角形3.下列说法正确的是()A.“经过有交通信号的路口遇到红灯”是必然事件B.已知某篮球运动员投篮投中的概率为0.6,则他投10次一定可投中6次C.投掷一枚硬币正面朝上是随机事件D.明天太阳从东方升起是随机事件4.已知一元二次方程有一个根为2,则另一根为()A.-4 B.-2 C.4 D.25.若点M在抛物线的对称轴上,则点M的坐标可能是()A.(3,-4) B.(-3,0) C.(3,0) D.(0,-4)6.将二次函数y=x2+2x﹣1的图象沿x轴向右平移2个单位长度,得到的函数表达式是()A.y=(x+3)2﹣2 B.y=(x+3)2+2C.y=(x﹣1)2+2 D.y=(x﹣1)2﹣27.如图,菱形ABCD中,∠B=60°,AB=4,以AD为直径的⊙O交CD于点E,则的长为()A. B. C. D.8.一个不透明的盒子中装有6个大小相同的乒乓球,其中4个是黄球,2个是白球.从该盒子中任意摸出一个球,摸到黄球的概率是()A. B. C. D.9.如图,过⊙O上一点C作⊙O的切线,交⊙O直径AB的延长线于点D.若∠D=40°,则∠A的度数为()A.20° B.25° C.30° D.40°10.某药品原价每盒28元,为响应国家解决老百姓看病贵的号召,经过连续两次降价,现在售价每盒16元,设该药品平均每次降价的百分率是x,由题意,所列方程正确的是()A.28(1-2x)=16B.16(1+2x)=28C.28(1-x)2=16D.16(1+x)2=28二、填空题11.已知点P(a+1,1)关于原点的对称点在第四象限,则a的取值范围是_____.12.若一元二次方程ax2﹣bx﹣2018=0有一个根为x=﹣1,则a+b=____.13.若关于的一元二次方程(m-1)x2-4x+1=0有两个不相等的实数根,则m的取值范围为_____________.14.有一个二次函数的图象,三位同学分别说了它的一些特点:甲:与轴只有一个交点;乙:对称轴是直线;丙:与y轴的交点到原点的距离为3.满足上述全部特点的二次函数的解析式为______________________.15.如图,若点P在反比例函数y=﹣(x<0)的图象上,过点P作PM⊥x轴于点M,PN⊥y轴于点N,则矩形PMON的面积为_____.16.平面直角坐标系中,P(2,3)关于原点对称的点A坐标是__________.三、解答题17.解一元二次方程:.18.已知抛物线y=ax2+bx+c经过点A(1,0),B(﹣1,0),C(0,﹣2).求此抛物线的函数解析式和顶点坐标.19.如图,在Rt△ABC中,∠ACB=90°,∠ABC=30°,AC=3.(1)以BC边上一点O为圆心作⊙O,使⊙O分别与AC、AB都相切(要求:尺规作图,保留作图痕迹,不写作法);(2)求⊙O的面积.20.车辆经过润扬大桥收费站时,4个收费通道A.B、C、D中,可随机选择其中的一个通过.(1)一辆车经过此收费站时,选择A通道通过的概率是;(2)求两辆车经过此收费站时,选择不同通道通过的概率.21.正方形ABCD的边长为3,E、F分别是AB、BC边上的点,且∠EDF=45°.将△DAE绕点D逆时针旋转90°,得到△DCM.(1)求证:EF=FM(2)当AE=1时,求EF的长.22.某商场购进一批单价为4元的日用品.若按每件5元的价格销售,每月能卖出3万件;若按每件6元的价格销售,每月能卖出2万件,假定每月销售件数y(件)与价格x(元/件)之间满足一次函数关系.(1)试求y与x之间的函数关系式;(2)当销售价格定为多少时,才能使每月的利润最大?每月的最大利润是多少?23.已知:如图,正比例函数的图象与反比例函数的图象交于点(1)试确定上述正比例函数和反比例函数的表达式;(2)根据图象回答,在第一象限内,当取何值时,反比例函数的值大于正比例函数的值?(3)是反比例函数图象上的一动点,其中过点作直线轴,交轴于点;过点作直线轴交轴于点,交直线于点.当四边形的面积为6时,请判断线段与的大小关系,并说明理由.24.如图⊙O是△ABC的外接圆,∠ABC=45°,延长BC于D,连接AD,使得AD∥OC,AB交OC于E.(1)求证:AD与⊙O相切;(2)若AE=2,CE=2.求⊙O的半径和AB的长度.25.如图,直线l:y=﹣x+1与x轴、y轴分别交于点B、C,经过B、C两点的抛物线y=x2+bx+c与x轴的另一个交点为A.(1)求该抛物线的解析式;(2)若点P在直线l下方的抛物线上,过点P作PD∥x轴交l于点D,PE∥y轴交l于点E,求PD+PE的最大值;(3)设F为直线l上的点,以A、B、P、F为顶点的四边形能否构成平行四边形?若能,求出点F的坐标;若不能,请说明理由.参考答案1.C【解析】试题解析:分解因式得:x(x+1)=0,∴x=0,x+1=0,解方程得:故选C.2.B【解析】试题解析:A.不是轴对称图形,是中心对称图形,故此选项错误,不合题意;B.是轴对称图形,也是中心对称图形,故此选项正确,符合题意;C.是轴对称图形,不是中心对称图形,故此选项错误,不合题意;D.无法确定是轴对称图形,也不是中心对称图形,故此选项错误,不合题意.故选B.3.C【详解】试题解析:A.“经过有交通信号的路口遇到红灯”是随机事件,说法错误.B.已知某篮球运动员投篮投中的概率为0.6,则他投10次一定可投中6次,说法错误.C.投掷一枚硬币正面朝上是随机事件,说法正确.D.明天太阳从东方升起是必然事件.说法错误.故选C.4.D【详解】试题解析:设关于x的一元二次方程的另一个根为t,则解得t=2.故选D.点睛:一元二次方程两根分别是5.B【解析】试题解析:∴对称轴为x=-3,∵点M在对称轴上,∴M点的横坐标为-3,故选B.6.D【分析】根据题目中的函数解析式,可以先化为顶点式,然后再根据左加右减的方法进行解答即可得到平移后的函数解析式.【详解】解:∵y=x2+2x-1=(x+1)2-2,∴二次函数y=x2+2x-1的图象沿x轴向右平移2个单位长度,得到的函数表达式是:y=(x+1-2)2-2=(x-1)2-2,故选D.【点睛】本题考查二次函数的图象与几何变换,解答本题的关键是明确二次函数平移的特点,左加右减、上加下减,注意一定将函数解析式化为顶点式之后再平移.7.B【分析】连接OE,由菱形的性质得出∠D=∠B=60°,AD=AB=4,得出OA=OD=2,由等腰三角形的性质和三角形内角和定理求出∠DOE=60°,再由弧长公式即可得出答案.【详解】解:连接OE,如图所示:∵四边形ABCD是菱形,∴∠D=∠B=60°,AD=AB=4,∴OA=OD=2,∵OD=OE,∴∠OED=∠D=60°,∴∠DOE=180°﹣2×60°=60°,∴的长==;故选B.【点睛】本题考查弧长公式、菱形的性质、等腰三角形的性质等知识;熟练掌握菱形的性质,求出∠DOE的度数是解决问题的关键.8.B【详解】试题解析:∵盒子中装有6个大小相同的乒乓球,其中4个是黄球,∴摸到黄球的概率是故选B.考点:概率公式.9.B【分析】直接利用切线的性质得出∠OCD=90°,进而得出∠DOC=50°,进而得出答案.【详解】解:连接OC,∵DC是⊙O的切线,C为切点,∴∠OCD=90°,∵∠D=40°,∴∠DOC=50°,∵AO=CO,∴∠A=∠ACO,∴∠A=∠DOC=25°.
故选:B.【点睛】此题主要考查了切线的性质,正确得出∠DOC=50°是解题关键.10.C【解析】【分析】可先表示出第一次降价后的价格,那么第一次降价后的价格×(1﹣降低的百分率)=16,把相应数值代入即可求解.【详解】解:设该药品平均每次降价的百分率是x,则第一次降价后的价格为28×(1﹣x)元,两次连续降价后的售价是在第一次降价后的价格的基础上降低x,为28×(1﹣x)×(﹣x)元,则列出的方程是28(1﹣x)2=16.故选:C.11.【解析】试题解析:∵P(,1关于原点对称的点在第四象限,∴P点在第二象限,∴a+1<0,解得:a<−1,故答案为:a<−1.12.2018【解析】【分析】把x=-1代入方程,整理即可求出a+b的值.【详解】解:把x=-1代入方程有:a+b-2018=0,即a+b=2018.故答案是:2018.【点睛】本题考查的是一元二次方程的解,把方程的解代入方程,可以求出代数式的值.13.且【详解】试题解析:∵一元二次方程有两个不相等的实数根,∴m−1≠0且△=16−4(m−1)>0,解得m<5且m≠1,∴m的取值范围为m<5且m≠1.故答案为:m<5且m≠1.点睛:一元二次方程方程有两个不相等的实数根时:14.或【解析】试题解析:∵二次函数的对称轴为直线x=3,∴k=3,∴二次函数的解析式为∵与y轴的交点到原点的距离为3,∴与y轴交于点(0,3)或(0,−3),把(0,3)代入得,把(0,−3)代入得,∴解析式为:或.故答案为或.15.3【分析】设PN=a,PM=b,根据P点在第二象限得P(﹣a,b),根据矩形的面积公式即可得到结论.【详解】解:设PN=a,PM=b,∵P点在第二象限,∴P(﹣a,b),代入y=中,得k=﹣ab=﹣3,∴矩形PMON的面积=PN•PM=ab=3,故答案为:3.【点睛】本题考查了反比例函数的几何意义,即S矩形PMON=16.(﹣2,﹣3)【解析】若两个点关于原点对称,则它们的横坐标与纵坐标分别互为相反数.根据上述规律可知,点P(2,3)关于原点的对称点A的坐标为(-2,-3).故本题应填写:(-2,-3).17.【解析】【分析】用直配方法解方程即可.【详解】解:原方程可化为:,∴,解得:.18.抛物线顶点坐标为(0,-2)【解析】【分析】利用待定系数法即可求出二次函数解析式,化为顶点式即可求出抛物线的顶点坐标.【详解】把点A(1,0)、B(-1,0)、C(0,-2)的坐标,分别代入得:,解得:,∴二次函数的解析式为.∴抛物线顶点坐标为(0,-2).【点睛】本题考查了二次函数的图像和性质,掌握待定系数法求解析式和化为顶点式是解二次函数题目的关键.19.(1)图形见解析(2)3π【解析】【分析】(1)直接利用角平分线的作法得出∠CAB的角平分线,进而得出答案;
(2)利用勾股定理得出⊙O的半径,进而利用圆的面积求法得出答案.【详解】解:(1)如图所示:⊙O为所求的图形.(2)在Rt△ABC中,∵∠ABC=30°,∴∠CAB=60°,∵AO平分∠CAB,∴∠CAO=30°,设,则,∵在Rt△ACO中,,∴,解得:或(负值不合题意,舍去),∴⊙O的面积为.【点睛】此题主要考查了复杂作图以及勾股定理,正确掌握角平分线的性质是解题关键.20.(1);(2).【详解】试题分析:(1)根据概率公式即可得到结论;(2)画出树状图即可得到结论.试题解析:(1)选择A通道通过的概率=,故答案为;(2)设两辆车为甲,乙,如图,两辆车经过此收费站时,会有16种可能的结果,其中选择不同通道通过的有12种结果,∴选择不同通道通过的概率==.21.(1)见解析;(2).【分析】(1)由折叠可得DE=DM,∠EDM为直角,可得出∠EDF+∠MDF=90°,由∠EDF=45°,得到∠MDF为45°,可得出∠EDF=∠MDF,再由DF=DF,利用SAS可得出三角形DEF与三角形MDF全等,由全等三角形的对应边相等可得出EF=MF;(2)由第一问的全等得到AE=CM=1,正方形的边长为3,用AB-AE求出EB的长,再由BC+CM求出BM的长,设EF=MF=x,可得出BF=BM-FM=BM-EF=4-x,在直角三角形BEF中,利用勾股定理列出关于x的方程,求出方程的解得到x的值,即为EF的长.【详解】(1)∵△DAE逆时针旋转90°得到△DCM∴DE=DM∠EDM=90°∴∠EDF+∠FDM=90°∵∠EDF=45°∴∠FDM=∠EDM=45°∵DF=DF∴△DEF≌△DMF∴EF=MF…(2)设EF=x∵AE=CM=1∴BF=BM-MF=BM-EF=4-x∵EB=2在Rt△EBF中,由勾股定理得即解之,得22.(1)(2)当销售价格定为6元时,每月的利润最大,每月的最大利润为40000元【解析】试题分析:(1)设y=kx+b,再由题目已知条件不难得出解析式;(2)设利润为W,将W用含x的式子表示出来,W为关于x的二次函数,要求最值,将解析式化为顶点式即可求出.试题解析:解:(1)设y=kx+b,根据题意得:,解得:k=-1,b=8,所以,y与x的函数关系式为y=-x+8;(2)设利润为W,则W=(x-4)(-x+8)=-(x-6)2+4,因为a=-1<0,所以当x=6时,W最大为4万元.当销售价格定为6元时,才能使每月的利润最大,每月的最大利润是4万元.点睛:要求最值,一般讲二次函数解析式写成顶点式.23.(1)反比例函数的表达式为:正比例函数的表达式为(2)第一象限内,当时,反比例函数的值大于正比例函数的值.(3),理由见解析【分析】(1)将A(3,2)分别代入y=,y=ax中,得ak的值,进而可得正比例函数和反比例函数的表达式;(2)观察图象,得在第一象限内,当0<x<3时,反比例函数的图象在正比例函数的上方;故反比例函数的值大于正比例函数的值;(3)有S△OMB=S△OAC=×|k|=3,可得S矩形OBDC为12;即OC•OB=12;进而可得mn的值,故可得BM与DM的大小;比较可得其大小关系.【详解】解:(1)将分别代入中,得∴∴反比例函数的表达式为:正比例函数的表达式为(2)第一象限内,当时,反比例函数的值大于正比例函数的值.(3)理由:∵∴即∵∴即∴∴∴24.(1)见解析;(2)AB=.【分析】(1)连接OA,要证明切线,只需证明OA⊥AD,根据AD∥OC,只需得到OA⊥OC,根据圆周角定理即可证明;(2)设⊙O的半径为R,则OA=R,OE=R-2,AE=2,在Rt△OAE中根据勾股定理可计算出R=4;作OH⊥AB于H,根据垂径定理得AH=BH,再利用面积法计算出OH=,然后根据勾股定理计算出AH=,再利用垂径定理得出AB=2AH═.【详解】(1)连接OA,∵∠ABC=45°,∴∠AOC=2∠ABC=90°,∴OA⊥OC;又∵AD∥OC,∴OA⊥AD,∴AD是⊙O的切线.(2)设⊙O的半径为R,则OA=R,OE=R﹣2,AE=2,在Rt△OAE中,∵AO2+OE2=AE2,∴R2+(R﹣2)2=(2)2,解得R=4,作OH⊥AB于H,如图,OE=OC﹣CE=4﹣2=2,则AH=BH,∵OH•AE=•OE•OA,∴OH===,在Rt△AOH中,AH==,∵OH⊥AB,∴AB=2AH=.【点睛】本题考查了切线的判定定理.综合运用了圆周角定理、等腰直角三角形的性质、等腰三角形的性质、30度的直角三角形的性质得到有关线段之间的关系,综合性较强,是中考常考体
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五版木地板电商平台入驻与销售合同3篇
- 二零二五年度农业种植节水灌溉技术服务合同标准
- 二零二五年度宠物猫宠物用品线上商城合作合同4篇
- 二零二五年度土地储备开发土地征用补偿合同
- 2025年销售总监劳动合同模板:业绩提升与团队建设策略3篇
- 2025年度健康医疗大数据应用合同范本2篇
- 二手房买卖协议规范文本2024版版B版
- 二零二五年度工业用地收储补偿合同3篇
- 二零二五年度女方离婚协议书制作参考模板
- 2025年度农民工职业培训合作服务合同模板
- 实体瘤疗效评价标准(RECIST11)
- 电力系统动态仿真与建模
- 虾皮shopee新手卖家考试题库及答案
- 四川省宜宾市2023-2024学年八年级上学期期末义务教育阶段教学质量监测英语试题
- 价值医疗的概念 实践及其实现路径
- 2024年中国华能集团燃料有限公司招聘笔试参考题库含答案解析
- 《红楼梦》中的男性形象解读
- 安全生产技术规范 第49部分:加油站 DB50-T 867.49-2023
- 《三国演义》中的语言艺术:诗词歌赋的应用
- 肠外营养液的合理配制
- 消防安全教育培训记录表
评论
0/150
提交评论