初中数学同步八年级上册沪科版《压轴题》专题09构造全等三角形的五大方法含答案及解析_第1页
初中数学同步八年级上册沪科版《压轴题》专题09构造全等三角形的五大方法含答案及解析_第2页
初中数学同步八年级上册沪科版《压轴题》专题09构造全等三角形的五大方法含答案及解析_第3页
初中数学同步八年级上册沪科版《压轴题》专题09构造全等三角形的五大方法含答案及解析_第4页
初中数学同步八年级上册沪科版《压轴题》专题09构造全等三角形的五大方法含答案及解析_第5页
已阅读5页,还剩70页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

专题09构造全等三角形的五大方法目录解题知识必备 1压轴题型讲练 3类型一、利用“补形法”构造全等三角形 3类型二、利用“截长补短法”构造全等三角形 5类型三、利用“倍长中线法”构造全等三角形 7类型四、利用“旋转法”构造全等三角形 10类型五、利用“作垂线法”构造全等三角形 12压轴能力测评 141用SSS判定两个三角形全等的方法方法技巧:SSS指的是利用边边边证明三角形全等,只要找到对应边分别相等,即可证明!三边对应相等的两个三角形全等.(可以简写成“边边边”或“SSS”).备注:如图,如果=AB,=AC,=BC,则△ABC≌△.2用SAS判定两个三角形全等的方法方法技巧:SAS指的是利用边角边证明两三角形全等,这个角必须是两对应边的夹角,切不可看成是SSA,SSA是不能作为判定三角形全等的方法的。(1)两边和它们的夹角对应相等的两个三角形全等(可以简写成“边角边”或“SAS”).备注:如图,如果AB=,∠A=∠,AC=,则△ABC≌△.注意:这里的角,指的是两组对应边的夹角.(2)有两边和其中一边的对角对应相等,两个三角形不一定全等.如图,△ABC与△ABD中,AB=AB,AC=AD,∠B=∠B,但△ABC与△ABD不完全重合,故不全等,也就是有两边和其中一边的对角对应相等,两个三角形不一定全等.3用ASA或AAS判定两个三角形全等的方法方法技巧:此类主要是利用两角和一边,注意这个边可以是两角的夹边,也可以是角的对边或邻边!两角和它们的夹边对应相等的两个三角形全等(可以简写成“角边角”或“ASA”).备注:如图,如果∠A=∠,AB=,∠B=∠,则△ABC≌△.(1)两个角和其中一个角的对边对应相等的两个三角形全等(可以简写成“角角边”或“AAS”)备注:由三角形的内角和等于180°可得两个三角形的第三对角对应相等.这样就可由“角边角”判定两个三角形全等,也就是说,用角边角条件可以证明角角边条件,后者是前者的推论.(2)三个角对应相等的两个三角形不一定全等.如图,在△ABC和△ADE中,如果DE∥BC,那么∠ADE=∠B,∠AED=∠C,又∠A=∠A,但△ABC和△ADE不全等.这说明,三个角对应相等的两个三角形不一定全等.4用HL判定两个直角三角形全等的方法方法技巧:HL只适用于直角三角形的判定,指的是一直角边和一斜边。(1)由三角形全等的条件可知,对于两个直角三角形,满足一边一锐角对应相等,或两直角边对应相等,这两个直角三角形就全等了.这里用到的是“AAS”,“ASA”或“SAS”判定定理.(2)判定直角三角形全等的特殊方法——斜边,直角边定理在两个直角三角形中,有斜边和一条直角边对应相等的两个直角三角形全等(可以简写成“斜边、直角边”或“HL”).这个判定方法是直角三角形所独有的,一般三角形不具备.备注:1)“HL”从顺序上讲是“边边角”对应相等,由于其中含有直角这个特殊条件,所以三角形的形状和大小就确定了.2)判定两个直角三角形全等的方法共有5种:SAS、ASA、AAS、SSS、HL.证明两个直角三角形全等,首先考虑用斜边、直角边定理,再考虑用一般三角形全等的证明方法.3)应用“斜边、直角边”判定两个直角三角形全等的过程中要突出直角三角形这个条件,书写时必须在两个三角形前加上“Rt”.类型一、利用“补形法”构造全等三角形“补形法”是指补全图形的方法,主要是利用条件构造与已知三角形全等的三角形,利用全等三角形解决问题。例.如图,ABC中,AC=BC,∠ACB=90°,AD平分∠BAC交BC于点D,过点B作BE⊥AD,交AD延长线于点E,F为AB的中点,连接CF,交AD于点G,连接BG.(1)线段BE与线段AD有何数量关系?并说明理由;(2)判断BEG的形状,并说明理由.【变式训练1】.求证:在直角三角形中,若一个锐角等于30°,则它所对的直角边等于斜边的一半.要求:(1)根据给出的线段及∠B,以线段为直角边,在给出的图形上用尺规作出的斜边,使得,保留作图痕迹,不写作法;(2)根据(1)中所作的图形,写出已知、求证和证明过程.【变式训练2】.如图1,在平面直角坐标系中,直线分别交x轴、y轴于两点,且满足,且是常数,直线平分,交x轴于点D.(1)若的中点为M,连接交于点N,求证:;(2)如图2,过点A作,垂足为E,猜想与间的数量关系,并证明你的猜想.【变式训练3】.已知,如图ΔABC中,,,的平分线交于点,,求证:.类型二、利用“截长补短法”构造全等三角形“截长补短”是处理线段间数量关系的一种重要的解题方法.当题目中出现三条线段间的和差关系时(如a=b+c),常考虑用此法解决.所谓"截",就是将最长的线段a截成两段,使其中一段等于较短的一条线段b,再利用全等三角形或者等腰三角形的知识证另一段等于线段c;所谓"补",就是将较短的线段6延长,使延长的线段长度为c,相当于将线段b,c拼成一条线段,再证明此线段的长等于a.用截长补短法解决问题的关键,是用"截"或"补"的手段去构造线段.例.如图,在平面直角坐标系中,,,为轴正半轴上一点,在第四象限,且,平分,.

(1)直接写出B点坐标;(2)求证:;(3)求四边形的面积.【变式训练1】.如图,在四边形中,与交于点,平分,平分,.

(1)求的度数;(2)求证:.【变式训练2】.如图所示,,,分别是,的平分线,点E在上,求证:.

【变式训练3】.(1)阅读理解:问题:如图1,在四边形中,对角线BD平分,.求证:.思考:“角平分线+对角互补”可以通过“截长、补短”等构造全等去解决问题.方法1:在上截取,连接,得到全等三角形,进而解决问题;方法2:延长到点,使得,连接,得到全等三角形,进而解决问题.结合图1,在方法1和方法2中任选一种,添加辅助线并完成证明.(2)问题解决:如图2,在(1)的条件下,连接,当时,探究线段AB,,BD之间的数量关系,并说明理由;(3)问题拓展:如图3,在四边形中,,,过点作,垂足为点,请写出线段AB、CE、之间的数量关系并说明理由.类型三、利用“倍长中线法”构造全等三角形中线是三角形中的重要线段之一,在利用中线解决几何问题时,常常采用“倍长中线法”添加辅助线.倍长中线法:就是将三角形的中线延长一倍,以便构造出全等三角形,从而运用全等三角形的有关知识来解决问题的方法.倍长中线法的过程:延长某某到某点,使某某等于某某,使什么等于什么(延长的那一条),用SAS证全等(对顶角相等)倍长中线最重要的一点:延长中线一倍,完成SAS全等三角形模型的构造。【方法讲解】常用辅助线添加方法——倍长中线△ABC中,AD是BC边中线,如图一图一图二方式1:延长AD到E,使DE=AD,连接BE如图二结论:方式2:间接倍长如图三:作CF⊥AD于F,作BE⊥AD的延长线于E;如图四:延长MD到N,使DN=MD,连接CN,例.如图,为中线,点在上,交于点,.求证:.【变式训练1】.(1)如图①,在中,若,,为边上的中线,求的取值范围;(2)如图②,在中,点D是的中点,,交于点E,交于点F,连接,判断与的大小关系并证明;(3)如图③,在四边形中,,与的延长线交于点F,点E是的中点,若是的角平分线.试探究线段,,之间的数量关系,并加以证明.【变式训练2】.(1)阅读理解:如图1,在中,若,.求边上的中线的取值范围,小聪同学是这样思考的:延长至,使,连接.利用全等将边转化到,在中利用三角形三边关系即可求出中线的取值范围,在这个过程中小聪同学证三角形全等用到的判定方法是______,中线的取值范围是______;(2)问题解决:如图2,在中,点是的中点,.交于点,交于点.求证:;(3)问题拓展:如图3,在中,点是的中点,分别以,为直角边向外作和,其中,,,连接,请你探索与的数量与位置关系.【变式训练3】.如图,在中,是上一点,连接,已知,,是的中线.求证:.(提示:延长至,使,连接)类型四、利用“旋转法”构造全等三角形在解决等边三角形、正方形或者顶角为特殊的等腰三角形时,若条件较为分散,可考虑利用旋转构造全等三角形,可高效突破有关难题。手拉手模型便是由两个同顶角的等腰三角形形成,可看成两个全等三角形旋转而得,这便体现了全等三角形和旋转之间的关系!熟悉手拉手模型2.遇60°,120°构全等关键:抓住相等的边,旋转点,以及旋转后图形的特征3.遇45°,135°构造全等通过全等构造,将线段转化到直角三角形中以上这些,将会在另外专题中讲到。例.问题背景:“半角模型”问题.如图1,在四边形中,,,,点E,F分别是上的点,且,连接,探究线段之间的数量关系.(1)探究发现:小明同学的方法是延长到点G.使.连结,先证明,再证明,从而得出结论:_____________;(2)拓展延伸:如图2,在四边形中,,,E、F分别是边上的点,且,请问(1)中的结论是否仍然成立?若成立,请写出证明过程,若不成立,请说明理由.(3)尝试应用:如图3,在四边形中,,,E、F分别是边延长线上的点,且,请探究线段具有怎样的数量关系,并证明.【变式训练1】.已知:边长为4的正方形ABCD,∠EAF的两边分别与射线CB、DC相交于点E、F,且∠EAF=45°,连接EF.求证:EF=BE+DF.思路分析:(1)如图1,∵正方形ABCD中,AB=AD,∠BAD=∠B=∠ADC=90°,∴把△ABE绕点A逆时针旋转90°至△ADE',则F、D、E'在一条直线上,∠E'AF=度,……根据定理,可证:△AEF≌△AE'F.∴EF=BE+DF.类比探究:(2)如图2,当点E在线段CB的延长线上,探究EF、BE、DF之间存在的数量关系,并写出证明过程;拓展应用:(3)如图3,在△ABC中,AB=AC,D、E在BC上,∠BAC=2∠DAE.若S△ABC=14,S△ADE=6,求线段BD、DE、EC围成的三角形的面积.【变式训练2】.(1)如图1,在四边形ABCD中,,,E、F分别是边BC、CD上的点,且.求证:;(2)如图2,在四边形ABCD中,,,E、F分别是边BC、CD上的点,且,请直接写出EF、BE、FD之间的数量关系;(3)如图3,在四边形ABCD中,,,E、F分别是边BC、CD延长线上的点,且,(1)中的结论是否仍然成立?若成立,请证明;若不成立,请写出它们之间的数量关系,并证明.【变式训练3】.如图,在正方形ABCD中,点P在直线BC上,作射线AP,将射线AP绕点A逆时针旋转45°,得到射线AQ,交直线CD于点Q,过点B作BE⊥AP于点E,交AQ于点F,连接DF.(1)依题意补全图形;(2)用等式表示线段BE,EF,DF之间的数量关系,并证明.类型五、利用“作垂线法”构造全等三角形例.小宇和小明一起进行数学游戏:已知,将等腰直角三角板摆放在平面内,使点A在的内部,且两个底角顶点B,C分别放在边上.

(1)如图1,小明摆放,恰好使得,又由于是等腰直角三角形,,从而直接可以判断出点A在的角平分线上.请回答:小明能够直接作出判断的数学依据是______.(2)如图2,小宇调整了的位置,请判断平分是否仍然成立?若成立,请证明,若不成立,请举出反例.【变式训练1】.定义:三角形一个内角的平分线所在的直线与另一个内角相邻的外角的平分线相交所成的锐角称为该三角形第三个内角的遥望角.

(1)如图1所示,是中的遥望角,直接写出与的数量关系__________;(2)如图1所示,连接,猜想与的数量关系,并说明理由;(3)如图2,四边形中,,点E在的延长线上,连,若已知,求证:是中的遥望角.【变式训练2】.阅读下面的题目及分析过程,并按要求进行证明.已知:如图,点E是BC的中点,点A在DE上,且∠BAE=∠CDE.求证:AB=CD.分析:证明两条线段相等,常用的方法是应用全等三角形或等腰三角形的判定和性质,观察本题中要证明的两条线段,它们不在同一个三角形中,且它们分别所在的两个三角形也不全等,因此,要证AB=CD,必须添加适当的辅助线,构造全等三角形或等腰三角形.(1)现给出如下两种添加辅助线的方法,请任意选出其中一种,对原题进行证明.①如图1,延长DE到点F,使EF=DE,连接BF;②如图2,分别过点B、C作BF⊥DE,CG⊥DE,垂足分别为点F,G.(2)请你在图3中添加不同于上述的辅助线,并对原题进行证明.【变式训练3】.如图,中,,则点B的坐标为.1.在中,,中线,则边的取值范围是()A. B. C. D.2.如图,在△ABC中,AB=4,AC=2,点D为BC的中点,则AD的长可能是()A.1 B.2 C.3 D.43.如图,在四边形中,,,,,,点是的中点,则的长为(

).A.2 B. C. D.34.如图,在ΔABC中,,,平分,、分别是、上的动点,当最小时,的度数为()A. B. C. D.5.如图,已知四边形ABCD中,AD∥BC,若∠DAB的平分线AE交CD于E,连接BE,且BE恰好平分∠ABC,则AB的长与AD+BC的大小关系是()A.AB>AD+BC B.AB<AD+BC C.AB=AD+BC D.无法确定6.如图,在中,.将绕O点逆时针方向旋转90°到的位置,则点的坐标是.7.已知点C为线段上一点,分别以为边在线段AB同侧作和,且.,,直线与交于点F.

(1)如图1,可得___________;若,则___________.(2)如图2,若,则___________.(用含a的式子表示)(3)设,将图2中的绕点C顺时针旋转任意角度(交点F至少在中的一条线段上),如图3.试探究与a的数量关系,并予以说明.8.在中,,,点为直线上的一个动点(不与点,重合),以为一边在的右侧作,使,,连.(1)如图1,当点在线段上时,①与的位置关系是______;②线段、、之间的数量关系是______.(2)如图2,当点在线段的延长线上时,(1)中的两个结论还成立吗?如果成立,请给出证明;如果不成立,请写出正确的结论再给出证明.9.已知与都是等腰直角三角形,且.求证:(1);(2).10.如图,在中,,点D在内,,,点E在外,.(1)的度数为_______________;(2)小华说是等腰三角形,小明说是等边三角形,___________的说法更准确,并说明理由;(3)连接,若,求的长.

专题09构造全等三角形的五大方法目录解题知识必备 1压轴题型讲练 3类型一、利用“补形法”构造全等三角形 3类型二、利用“截长补短法”构造全等三角形 10类型三、利用“倍长中线法”构造全等三角形 18类型四、利用“旋转法”构造全等三角形 27类型五、利用“作垂线法”构造全等三角形 38压轴能力测评 451用SSS判定两个三角形全等的方法方法技巧:SSS指的是利用边边边证明三角形全等,只要找到对应边分别相等,即可证明!三边对应相等的两个三角形全等.(可以简写成“边边边”或“SSS”).备注:如图,如果=AB,=AC,=BC,则△ABC≌△.2用SAS判定两个三角形全等的方法方法技巧:SAS指的是利用边角边证明两三角形全等,这个角必须是两对应边的夹角,切不可看成是SSA,SSA是不能作为判定三角形全等的方法的。(1)两边和它们的夹角对应相等的两个三角形全等(可以简写成“边角边”或“SAS”).备注:如图,如果AB=,∠A=∠,AC=,则△ABC≌△.注意:这里的角,指的是两组对应边的夹角.(2)有两边和其中一边的对角对应相等,两个三角形不一定全等.如图,△ABC与△ABD中,AB=AB,AC=AD,∠B=∠B,但△ABC与△ABD不完全重合,故不全等,也就是有两边和其中一边的对角对应相等,两个三角形不一定全等.3用ASA或AAS判定两个三角形全等的方法方法技巧:此类主要是利用两角和一边,注意这个边可以是两角的夹边,也可以是角的对边或邻边!两角和它们的夹边对应相等的两个三角形全等(可以简写成“角边角”或“ASA”).备注:如图,如果∠A=∠,AB=,∠B=∠,则△ABC≌△.(1)两个角和其中一个角的对边对应相等的两个三角形全等(可以简写成“角角边”或“AAS”)备注:由三角形的内角和等于180°可得两个三角形的第三对角对应相等.这样就可由“角边角”判定两个三角形全等,也就是说,用角边角条件可以证明角角边条件,后者是前者的推论.(2)三个角对应相等的两个三角形不一定全等.如图,在△ABC和△ADE中,如果DE∥BC,那么∠ADE=∠B,∠AED=∠C,又∠A=∠A,但△ABC和△ADE不全等.这说明,三个角对应相等的两个三角形不一定全等.4用HL判定两个直角三角形全等的方法方法技巧:HL只适用于直角三角形的判定,指的是一直角边和一斜边。(1)由三角形全等的条件可知,对于两个直角三角形,满足一边一锐角对应相等,或两直角边对应相等,这两个直角三角形就全等了.这里用到的是“AAS”,“ASA”或“SAS”判定定理.(2)判定直角三角形全等的特殊方法——斜边,直角边定理在两个直角三角形中,有斜边和一条直角边对应相等的两个直角三角形全等(可以简写成“斜边、直角边”或“HL”).这个判定方法是直角三角形所独有的,一般三角形不具备.备注:1)“HL”从顺序上讲是“边边角”对应相等,由于其中含有直角这个特殊条件,所以三角形的形状和大小就确定了.2)判定两个直角三角形全等的方法共有5种:SAS、ASA、AAS、SSS、HL.证明两个直角三角形全等,首先考虑用斜边、直角边定理,再考虑用一般三角形全等的证明方法.3)应用“斜边、直角边”判定两个直角三角形全等的过程中要突出直角三角形这个条件,书写时必须在两个三角形前加上“Rt”.类型一、利用“补形法”构造全等三角形“补形法”是指补全图形的方法,主要是利用条件构造与已知三角形全等的三角形,利用全等三角形解决问题。例.如图,ABC中,AC=BC,∠ACB=90°,AD平分∠BAC交BC于点D,过点B作BE⊥AD,交AD延长线于点E,F为AB的中点,连接CF,交AD于点G,连接BG.(1)线段BE与线段AD有何数量关系?并说明理由;(2)判断BEG的形状,并说明理由.【答案】(1)BE=AD,见解析;(2)BEG是等腰直角三角形,见解析【分析】(1)延长BE、AC交于点H,先证明△BAE≌△HAE,得BE=HE=BH,再证明△BCH≌△ACD,得BH=AD,则BE=AD;(2)先证明CF垂直平分AB,则AG=BG,再证明∠CAB=∠CBA=45°,则∠GAB=∠GBA=22.5°,于是∠EGB=∠GAB+∠GBA=45°,可证明△BEG是等腰直角三角形.【详解】证:(1)BE=AD,理由如下:如图,延长BE、AC交于点H,∵BE⊥AD,∴∠AEB=∠AEH=90°,∵AD平分∠BAC,∴∠BAE=∠HAE,在△BAE和△HAE中,,∴△BAE≌△HAE(ASA),∴BE=HE=BH,∵∠ACB=90°,∴∠BCH=180°﹣∠ACB=90°=∠ACD,∴∠CBH=90°﹣∠H=∠CAD,在△BCH和△ACD中,,∴△BCH≌△ACD(ASA),∴BH=AD,∴BE=AD.(2)△BEG是等腰直角三角形,理由如下:∵AC=BC,AF=BF,∴CF⊥AB,∴AG=BG,∴∠GAB=∠GBA,∵AC=BC,∠ACB=90°,∴∠CAB=∠CBA=45°,∴∠GAB=∠CAB=22.5°,∴∠GAB=∠GBA=22.5°,∴∠EGB=∠GAB+∠GBA=45°,∵∠BEG=90°,∴∠EBG=∠EGB=45°,∴EG=EB,∴△BEG是等腰直角三角形.【点睛】本题考查等腰直角三角形的判定与性质,全等三角形的判定与性质等,理解等腰直角三角形的基本性质,并且掌握全等三角形中常见辅助线的作法是解题关键.【变式训练1】.求证:在直角三角形中,若一个锐角等于30°,则它所对的直角边等于斜边的一半.要求:(1)根据给出的线段及∠B,以线段为直角边,在给出的图形上用尺规作出的斜边,使得,保留作图痕迹,不写作法;(2)根据(1)中所作的图形,写出已知、求证和证明过程.【答案】(1)见解析(2)见解析【分析】(1)根据作一个角等于已知角的方法作图即可;(2)根据图形和命题的已知事项写出已知,根据命题的未知事项写出求证,再写出证明过程即可.【详解】(1)解:如图所示,线段为所求作的线段;(2)已知:如图,是直角三角形,,.求证:.解法一:如图,在上截取一点,使得,连接.∵,,∴.∵,∴是等边三角形.∴,.∵,∴.∴.∴.∵,∴.解法二:如图,延长至点,使,连接.∵,,∴,,∵,,,∴.∴.∴是等边三角形.∴.∵,∴.【点睛】本题主要考查了用尺规作一个角等于已知角及命题的证明过程的书写格式,掌握相关内容是解题的关键.【变式训练2】.如图1,在平面直角坐标系中,直线分别交x轴、y轴于两点,且满足,且是常数,直线平分,交x轴于点D.(1)若的中点为M,连接交于点N,求证:;(2)如图2,过点A作,垂足为E,猜想与间的数量关系,并证明你的猜想.【答案】(1)见解析;(2),证明见解析.【分析】(1)由已知条件可得,进而得,由直线平分及直角三角形斜边上中线的性质得,再由三角形的外角定理,分别求得,根据角度的等量代换,即可得,最后由等角对等边的性质即可得证;(2)如图,延长交轴于点,先证明,得,再证明,即可得.【详解】(1),,,,直线平分,,为的中点,,,,,,,,.(2),证明:如图,延长交轴于点,直线平分,,,,又,(ASA),,,,即,,又,(ASA),,即.【点睛】本题考查了平面直角坐标系的定义,非负数之和为零,三角形角平分线的定义,三角形中线的性质,三角形外角定理,三角形全等的性质与判定,等角对等边,熟练掌握以上知识,添加辅助线是解题的关键.【变式训练3】.已知,如图ΔABC中,,,的平分线交于点,,求证:.【答案】见解析.【分析】延长BD交CA的延长线于F,先证得△ACE≌△ABF,得出CE=BF;再证△CBD≌△CFD,得出BD=DF;由此得出结论即可.【详解】证明:如图,延长交的延长线于,平分【点睛】此题考查三角形全等的判定与性质,角平分线的性质,根据已知条件,作出辅助线是解决问题的关键.类型二、利用“截长补短法”构造全等三角形“截长补短”是处理线段间数量关系的一种重要的解题方法.当题目中出现三条线段间的和差关系时(如a=b+c),常考虑用此法解决.所谓"截",就是将最长的线段a截成两段,使其中一段等于较短的一条线段b,再利用全等三角形或者等腰三角形的知识证另一段等于线段c;所谓"补",就是将较短的线段6延长,使延长的线段长度为c,相当于将线段b,c拼成一条线段,再证明此线段的长等于a.用截长补短法解决问题的关键,是用"截"或"补"的手段去构造线段.例.如图,在平面直角坐标系中,,,为轴正半轴上一点,在第四象限,且,平分,.

(1)直接写出B点坐标;(2)求证:;(3)求四边形的面积.【答案】(1)(2)见解析(3)32【分析】(1)证明是等腰直角三角形,可得结论;(2)过点作于点,,交的延长线于点.证明,可得结论;(3)证明四边形是正方形,再证明四边形的面积正方形的面积即可.【详解】(1),,,,平分,,,,,,故答案为:;(2)过点作于点,,交的延长线于点.

平分,,,,,,∴,;(3),,,,,,,,,,,,四边形是矩形,,四边形是正方形,.【点睛】本题属于四边形综合题,考查了正方形的判定和性质,全等三角形的判定和性质,等腰直角三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.【变式训练1】.如图,在四边形中,与交于点,平分,平分,.

(1)求的度数;(2)求证:.【答案】(1)(2)见解析【分析】(1)由四边形内角和性质求得.再由角平分线定义可得,,最后由三角形内角和性质得到结论;(2)作的平分线交于,证明,再由全等三角形的性质可得答案.【详解】(1)在四边形中,,又∵,∴.∵平分,平分,∴,,∴.在中,.(2).如图,作的平分线交于.则.

在和中,,.∴.同理,.∴【点睛】本题考查了全等三角形的判定和性质,角平分线的定义,正确地作出辅助线是解题的关键.【变式训练2】.如图所示,,,分别是,的平分线,点E在上,求证:.

【答案】见解析【分析】运用截长补短的方法,在上取点F,使,由角平分线定义得,,可证,得,结合平行线的性质可证,进一步证得,所以,得证结论.【详解】在上取点F,使

∵,分别是,的平分线∴,∵∴在和中∴∴∴∵∴在和中,∴∴∵∴.【点睛】本题考查角平分线的定义,平行线的性质,全等三角形的判定和性质;运用截长补短的方法构造全等三角形求证线段相等是解题的关键.【变式训练3】.(1)阅读理解:问题:如图1,在四边形中,对角线BD平分,.求证:.思考:“角平分线+对角互补”可以通过“截长、补短”等构造全等去解决问题.方法1:在上截取,连接,得到全等三角形,进而解决问题;方法2:延长到点,使得,连接,得到全等三角形,进而解决问题.结合图1,在方法1和方法2中任选一种,添加辅助线并完成证明.(2)问题解决:如图2,在(1)的条件下,连接,当时,探究线段AB,,BD之间的数量关系,并说明理由;(3)问题拓展:如图3,在四边形中,,,过点作,垂足为点,请写出线段AB、CE、之间的数量关系并说明理由.【答案】(1)见解析;(2),见解析;(3),见解析【分析】(1)方法1:在上截取,连接,证明,得出,,进而得出,则,等量代换即可得证;方法:延长AB到,使,连接,证明,得出,,进而得出,则,等量代换即可得证(2)AB,,BD之间的数量关系为.方法1:在BD上截取,连接,由知,得出,为等边三角形,证明,得出,进而即可得证;方法:延长CB到,使,连接,由知,则,是等边三角形,证明,得出,进而即可得证;(3)线段AB、CE、之间的数量关系为,连接BD,过点作于点,证明,和,得出,进而即可得证.【详解】解:(1)方法1:在上截取,连接,平分,,在和中,,,,,,,,,;方法:延长AB到,使,连接,平分,,在和中,,,,,,,,,;(2)AB,,BD之间的数量关系为.方法1:理由如下:如图,在BD上截取,连接,由知,,,,,为等边三角形,,,,为等边三角形,,,,,,.方法:理由:延长CB到,使,连接,由知,,是等边三角形,,,,,,,为等边三角形,,,,,即,在和中,,,,,;(3)线段AB、CE、之间的数量关系为.连接BD,过点作于点,,,,在和中,,,,,在和中,,,,,,【点睛】本题考查了全等三角形的性质与判定,掌握全等三角形的性质与判定是解题的关键.类型三、利用“倍长中线法”构造全等三角形中线是三角形中的重要线段之一,在利用中线解决几何问题时,常常采用“倍长中线法”添加辅助线.倍长中线法:就是将三角形的中线延长一倍,以便构造出全等三角形,从而运用全等三角形的有关知识来解决问题的方法.倍长中线法的过程:延长某某到某点,使某某等于某某,使什么等于什么(延长的那一条),用SAS证全等(对顶角相等)倍长中线最重要的一点:延长中线一倍,完成SAS全等三角形模型的构造。【方法讲解】常用辅助线添加方法——倍长中线△ABC中,AD是BC边中线,如图一图一图二方式1:延长AD到E,使DE=AD,连接BE如图二结论:方式2:间接倍长如图三:作CF⊥AD于F,作BE⊥AD的延长线于E;如图四:延长MD到N,使DN=MD,连接CN,例.如图,为中线,点在上,交于点,.求证:.【答案】见解析【分析】本题主要考查了全等三角形的判定与性质,解题的关键是掌握全等三角形的判定与性质.延长至点,使,连接.结合题意可证明,得到,.由,可得,结合,得到,即可求解.【详解】解:如图,延长至点,使,连接.为的中线,.在和中,,,,.,.,,,.【变式训练1】.(1)如图①,在中,若,,为边上的中线,求的取值范围;(2)如图②,在中,点D是的中点,,交于点E,交于点F,连接,判断与的大小关系并证明;(3)如图③,在四边形中,,与的延长线交于点F,点E是的中点,若是的角平分线.试探究线段,,之间的数量关系,并加以证明.【答案】(1);(2),见解析;(3),见解析【分析】(1)由已知得出,即为的一半,即可得出答案;(2)延长至点M,使,连接,可得,得出,由线段垂直平分线的性质得出,在中,由三角形的三边关系得出即可得出结论;(3)延长交于点G,根据平行和角平分线可证,也可证得,从而可得,即可得到结论.【详解】解:(1)如图①,延长到点E,使,连接,∵D是的中点,∴,∵,∴,∴,在中,,∴,∴,∴,故答案为:;(2),理由如下:延长至点M,使,连接,如图②所示.同(1)得:,∴,∵,∴,在中,由三角形的三边关系得:,∴;(3),理由如下:如图③,延长交于点G,∵,∴,在和中,,∴,∴,∵是的平分线,∴∴,∴,∵,∴.【点睛】本题是三角形综合题,主要考查了三角形的三边关系,作辅助线—倍长中线法、全等三角形的判定与性质,角的关系等知识点,所以本题的综合性比较强,有一定的难度,通过作辅助线证明三角形全等是解题的关键.【变式训练2】.(1)阅读理解:如图1,在中,若,.求边上的中线的取值范围,小聪同学是这样思考的:延长至,使,连接.利用全等将边转化到,在中利用三角形三边关系即可求出中线的取值范围,在这个过程中小聪同学证三角形全等用到的判定方法是______,中线的取值范围是______;(2)问题解决:如图2,在中,点是的中点,.交于点,交于点.求证:;(3)问题拓展:如图3,在中,点是的中点,分别以,为直角边向外作和,其中,,,连接,请你探索与的数量与位置关系.【答案】(1),;(2)见解析;(3),【分析】(1)延长至,使,连接,利用“”证明,由全等三角形的性质可得,然后根据三角形三边关系“三角形任意两边之和大于第三边,任意两边之差小于第三边”求解即可;(2)延长至点,使,连接,利用“”证明,易得,可知为的垂直平分线,由垂直平分线的性质可得,然后由三角形的三边关系可证明结论;(3)延长于,使得,连接,延长交于,首先证明,由全等三角形的性质可得,,再证明,可得,,进而可证明.【详解】解:(1)如图1,延长至,使,连接,∵为边上的中线,,,∴,在和中,,∴,∴,在中,根据三角形三边关系可得:,即,∵,∴,∴,故答案为:,;(2)如图2中,延长至点,使,连接,∵点是的中点,∴,在和中,,∴,∴,∵,,∴,在中,由三角形的三边关系得:,∴;(3)结论:,,如图3,延长于,使得,连接,延长交于,∵点是的中点,∴,在和中,,∴,∴,,∵,,∴,∵,∴,在和中,,∴,∴,,∵,,∴,∴,∴,即.【点睛】本题主要考查了全等三角形的判定与性质、三角形三边关系、三角形内角和定理、三角形中线、垂直平分线的性质等知识,正确作出辅助线构造全等三角形是解题关键.【变式训练3】.如图,在中,是上一点,连接,已知,,是的中线.求证:.(提示:延长至,使,连接)【答案】见解析【分析】延长至,使,连接.先证明.得到,,再利用外角性质及等式的性质得到,进而得到,最后即可得到.【详解】证明:如图,延长至,使,连接.∵是的中线,∴.在与中,,∴.∴,.∵,∴.∵,,,∴.在与中,,∴.∴.∵,∴.【点睛】本题考查了全等三角形的判定与性质,解题的关键是熟练掌握全等三角形的判定与性质.类型四、利用“旋转法”构造全等三角形在解决等边三角形、正方形或者顶角为特殊的等腰三角形时,若条件较为分散,可考虑利用旋转构造全等三角形,可高效突破有关难题。手拉手模型便是由两个同顶角的等腰三角形形成,可看成两个全等三角形旋转而得,这便体现了全等三角形和旋转之间的关系!熟悉手拉手模型2.遇60°,120°构全等关键:抓住相等的边,旋转点,以及旋转后图形的特征3.遇45°,135°构造全等通过全等构造,将线段转化到直角三角形中以上这些,将会在另外专题中讲到。例.问题背景:“半角模型”问题.如图1,在四边形中,,,,点E,F分别是上的点,且,连接,探究线段之间的数量关系.(1)探究发现:小明同学的方法是延长到点G.使.连结,先证明,再证明,从而得出结论:_____________;(2)拓展延伸:如图2,在四边形中,,,E、F分别是边上的点,且,请问(1)中的结论是否仍然成立?若成立,请写出证明过程,若不成立,请说明理由.(3)尝试应用:如图3,在四边形中,,,E、F分别是边延长线上的点,且,请探究线段具有怎样的数量关系,并证明.【答案】(1)(2)成立,理由见解析(3),证明见解析【分析】(1)延长到点G.使.连接,利用全等三角形的性质解决问题即可;(2)延长至M,使,连接.证明,由全等三角形的性质得出.,由全等三角形的性质得出,即,则可得出结论;(3)在上截取,使,连接.证明.由全等三角形的性质得出.证明,由全等三角形的性质得出结论.【详解】(1)解:.延长到点G.使.连接,∵,∴.∴.∴.∴.又∵,∴.∴.∵.∴.故答案为:;(2)解:(1)中的结论仍然成立.证明:如图②中,延长至M,使BM=DF,连接.∵,∴,在与中,,∴.∴.∵,∴.∴,即.在与中,,∴.∴,即,∴;(3)解:结论:.证明:如图③中,在上截取,使,连接.∵,∴.在与中,,∴.∴.∴.∴.∵,∴,

∴,∵,∴.【点睛】本题是三角形综合题,考查了三角形全等的判定和性质等知识,解题的关键是添加辅助线,构造全等三角形解决问题.【变式训练1】.已知:边长为4的正方形ABCD,∠EAF的两边分别与射线CB、DC相交于点E、F,且∠EAF=45°,连接EF.求证:EF=BE+DF.思路分析:(1)如图1,∵正方形ABCD中,AB=AD,∠BAD=∠B=∠ADC=90°,∴把△ABE绕点A逆时针旋转90°至△ADE',则F、D、E'在一条直线上,∠E'AF=度,……根据定理,可证:△AEF≌△AE'F.∴EF=BE+DF.类比探究:(2)如图2,当点E在线段CB的延长线上,探究EF、BE、DF之间存在的数量关系,并写出证明过程;拓展应用:(3)如图3,在△ABC中,AB=AC,D、E在BC上,∠BAC=2∠DAE.若S△ABC=14,S△ADE=6,求线段BD、DE、EC围成的三角形的面积.【答案】(1)45(2)DF=BE+EF,证明见解析(3)2【分析】(1)把绕点逆时针旋转至,则、、在一条直线上,,再证△,得,进而得出结论;(2)将绕点逆时针旋转得到,由旋转的性质得,再证△,得,进而得出结论;(3)将绕点逆时针旋转得到,连接,则,得,因此,同(2)得△,则,,得、、围成的三角形面积,即可求解.【详解】(1)解:如图1,∵正方形ABCD中,AB=AD,∠BAD=∠B=∠ADC=90°,∴把△ABE绕点A逆时针旋转90°至,则F、D、在一条直线上,≌△ABE,∴=BE,∠=∠BAE,=AE,∴∠=∠EAD+∠=∠EAD+∠BAE=∠BAD=90°,则∠=∠﹣∠EAF=45°,∴∠EAF=∠,∴△AEF≌△(SAS),∴,∵,∴EF=BE+DF.故答案为:45;(2)解:DF=BE+EF

理由如下:将△ABE绕点A逆时针旋转90°得到△,∴△≌△ABE,∴AE=,BE=,∠=∠BAE,∴∠=∠BAE+∠=∠+∠=∠BAD=90°,则∠=∠﹣∠EAF=45°,∴∠=∠EAF=45°,在△AEF和△中,,∴△AEF≌△(SAS),∴,∵,∴DF=BE+EF;(3)解:将△ABD绕点A逆时针旋转得到△,连接,则△≌△ABD,∴CD'=BD,∴,同(2)得:△ADE≌△(SAS),∴,,∴BD、DE、EC围成的三角形面积为、、EC围成的三角形面积.【点睛】本题是四边形综合题,考查了全等三角形的判定与性质、旋转的性质、正方形的性质以及四边形和三角形面积等知识,本题综合性强,解此题的关键是根据旋转的启发正确作出辅助线得出全等三角形,属于中考常考题型.【变式训练2】.(1)如图1,在四边形ABCD中,,,E、F分别是边BC、CD上的点,且.求证:;(2)如图2,在四边形ABCD中,,,E、F分别是边BC、CD上的点,且,请直接写出EF、BE、FD之间的数量关系;(3)如图3,在四边形ABCD中,,,E、F分别是边BC、CD延长线上的点,且,(1)中的结论是否仍然成立?若成立,请证明;若不成立,请写出它们之间的数量关系,并证明.【答案】(1)见解析;(2)EF=BE+FD;(3)不成立,理由见解析.【分析】(1)可通过构建全等三角形实现线段间的转换,延长EB到G,使BG=DF,连接AG,目的就是要证明三角形AGE和三角形AEF全等,将EF转换为GE,证得EF=BE+DF,(2)思路和辅助线方法与(1)一样,证明三角形ABG和三角形ADF全等,(3)在BE上截取BG,使BG=DF,连接AG,用(1)中方法,可证得DF=BG,GE=EF,则EF=GE=BE-BG=BE-DF【详解】解:(1)如图,延长EB到G,使BG=DF,连接AG,在与中,;(2)(1)中结论EF=BE+FD仍成立,理由如下,证明:如图,延长CB到M,使BM=DF,在与中即在与中即;(3)结论EF=BE+FD不成立,理由如下,证明:在BE上截取BG,使BG=DF,连接AG,在与中.【点睛】本题考查四边形综合题,三角形全等的判定与性质,本题中通过全等三角形来实现线段的转换是解题关键,没有明确全等三角形时,要通过辅助线来构建与已知和所求条件相关联全等三角形.【变式训练3】.如图,在正方形ABCD中,点P在直线BC上,作射线AP,将射线AP绕点A逆时针旋转45°,得到射线AQ,交直线CD于点Q,过点B作BE⊥AP于点E,交AQ于点F,连接DF.(1)依题意补全图形;(2)用等式表示线段BE,EF,DF之间的数量关系,并证明.【答案】(1)补全图形见解析;(2)BE+DF=EF,证明见解析.【分析】(1)根据题意补全图形即可.(2)延长FE到H,使EH=EF,根据题意证明△ABH≌△ADF,然后根据全等三角形的性质即可证明.【详解】(1)补全图形(2)BE+DF=EF.证明:延长FE到H,使EH=EF∵BE⊥AP,∴AH=AF,∴∠HAP=∠FAP=45°,∵四边形ABCD为正方形,∴AB=AD,∠BAD=90°∴∠BAP+∠2=45°,∵∠1+∠BAP=45°∴∠1=∠2,∴△ABH≌△ADF,∴DF=BH,∵BE+BH=EH=EF,∴BE+DF=EF.【点睛】此题考查了正方形的性质和全等三角形的性质,解题的关键是根据题意作出辅助线.类型五、利用“作垂线法”构造全等三角形例.小宇和小明一起进行数学游戏:已知,将等腰直角三角板摆放在平面内,使点A在的内部,且两个底角顶点B,C分别放在边上.

(1)如图1,小明摆放,恰好使得,又由于是等腰直角三角形,,从而直接可以判断出点A在的角平分线上.请回答:小明能够直接作出判断的数学依据是______.(2)如图2,小宇调整了的位置,请判断平分是否仍然成立?若成立,请证明,若不成立,请举出反例.【答案】(1)角的内部到角的两边距离相等的点,都在这个角的平分线上.(2)成立,证明见解析.【分析】(1)根据角的内部到角的两边距离相等的点,都在这个角的平分线上,由此即可得出结论;(2)成立,过点A作,,构造全等三角形即可证明,从而得出结论成立.【详解】(1)解:因为,,根据角的内部到角的两边距离相等的点,都在这个角的平分线上,所以点A在的角平分线上故答案为:角的内部到角的两边距离相等的点,都在这个角的平分线上.(2)结论:平分仍然成立;证明:如解图3,过点A作,,

∴,又∵,∴,∴,又∵,∴,在和中,∴∴,又∵,,∴平分,故(1)结论正确.【点睛】本题考查了全等三角形的判定及性质,角平分线的判定,熟练掌握全等三角形的性质及判定、角平分线判定定理是解题的关键.【变式训练1】.定义:三角形一个内角的平分线所在的直线与另一个内角相邻的外角的平分线相交所成的锐角称为该三角形第三个内角的遥望角.

(1)如图1所示,是中的遥望角,直接写出与的数量关系__________;(2)如图1所示,连接,猜想与的数量关系,并说明理由;(3)如图2,四边形中,,点E在的延长线上,连,若已知,求证:是中的遥望角.【答案】(1)(2),理由见解析(3)见解析【分析】(1)运用角平分线的定义,以及三角形外角的性质,推导得到,,进而可得;(2)过点E作交的延长线于点M,作交于点N,作交的延长线于点H,由角平分线的性质定理和判定定理可得,根据可得;(3)过D作交于点M,过D作交的延长线于点N,先证四边形是矩形,再证,最后证得平分,平分即可.【详解】(1)解:是中的遥望角,平分,平分,,,,,又,,故答案为:;(2)解:,理由如下:如图,过点E作交的延长线于点M,作交于点N,作交的延长线于点H,

平分,,,,同理,,,,平分,即,,;(3)证明:如图,过D作交于点M,过D作交的延长线于点N,

,,,,四边形是矩形,,即,,,,在和中,,,,,,平分,,,,,,,,,平分,平分,是中的遥望角.【点睛】本题考查角平分线的性质及判定,全等三角形的性质及判定,三角形外角的定义和性质,等腰三角形的性质等,熟练掌握角平分线的性质定理及判定定理是解题的关键.【变式训练2】.阅读下面的题目及分析过程,并按要求进行证明.已知:如图,点E是BC的中点,点A在DE上,且∠BAE=∠CDE.求证:AB=CD.分析:证明两条线段相等,常用的方法是应用全等三角形或等腰三角形的判定和性质,观察本题中要证明的两条线段,它们不在同一个三角形中,且它们分别所在的两个三角形也不全等,因此,要证AB=CD,必须添加适当的辅助线,构造全等三角形或等腰三角形.(1)现给出如下两种添加辅助线的方法,请任意选出其中一种,对原题进行证明.①如图1,延长DE到点F,使EF=DE,连接BF;②如图2,分别过点B、C作BF⊥DE,CG⊥DE,垂足分别为点F,G.(2)请你在图3中添加不同于上述的辅助线,并对原题进行证明.【答案】(1)①见解析;②见解析;(2)见解析;【分析】(1)①如图1,延长DE到点F,使EF=DE,连接BF,△BEF≌△CED,∠BAE=∠F,AB=CD;②如图2,分别过点B、C作BF⊥DE,CG⊥DE,垂足分别为点F,G,△BEF≌△CEG△BAF≌△CDG,AB=CD;(2)如图3,过C点作CM∥AB,交DE的延长线于点M,则∠BAE=∠EMC,△BAE≌△CFE(AAS),∠F=∠EDC,CF=CD,AB=CD;【详解】(1)①如图1,延长DE到点F,使EF=DE,连接BF,∵点E是BC的中点,∴BE=CE,在△BEF和△CED中,,∴△BEF≌△CED(SAS),∴BF=CD,∠F=∠CDE,∵∠BAE=∠CDE,∴∠BAE=∠F,∴AB=BF,∴AB=CD;②如图2,分别过点B、C作BF⊥DE,CG⊥DE,垂足分别为点F,G,∴∠F=∠CGE=∠CGD=90°,∵点E是BC的中点,∴BE=CE,在△BEF和△CEG中,,∴△BEF≌△CEG(AAS),∴BF=CG,在△BAF和△CDG中,,∴△BAF≌△CDG(AAS),∴AB=CD;(2)如图3,过C点作CM∥AB,交DE的延长线于点M,则∠BAE=∠EMC,∵E是BC中点,∴BE=CE,在△BAE和△CME中,,∴△BAE≌△CFE(AAS),∴CF=AB,∠BAE=∠F,∵∠BAE=∠EDC,∴∠F=∠EDC,∴CF=CD,∴AB=CD.【点睛】本题主要考查了全等三角形的判定和性质,对顶角相等,平行线的性质,构造出全等三角形是解本题的关键.【变式训练3】.如图,中,,则点B的坐标为.【答案】(4,1)【分析】如图,过点B作BD⊥x轴于D,根据点A、点C坐标可得OA、OC的长,根据同角的余角相等可得∠OAC=∠DCB,利用AAS可证明△OAC≌△DCB,根据全等三角形的性质可得BD=OC,CD=OA,即可求出OD的长,进而可得答案.【详解】如图,过点B作BD⊥x轴于D,∵A(0,3),C(1,0),∴OA=3,OC=1,∵∠ACB=90°,∴∠OCA+∠DCB=90°,∵∠OAC+∠OCA=90°,∴∠OAC=∠DCB,在△OAC和△DCB中,,∴△OAC≌△DCB,∴BD=OC=1,CD=OA=3,∴OD=OC+CD=4,∴点B坐标为(4,1).故答案为:(4,1)【点睛】本题考查坐标与图形及全等三角形的判定与性质,熟练掌握全等三角形的判定定理是解题关键.1.在中,,中线,则边的取值范围是()A. B. C. D.【答案】B【分析】延长至,使,然后利用“边角边”证明和全等,根据全等三角形对应边相等可得,再利用三角形的任意两边之和大于第三边,三角形的任意两边之差小于第三边求出的取值范围,即为的取值范围.【详解】解:如图,延长至,使,∵是的中线,∴,在和中,,∴,∴,∵,,∴,∴,即∴.故选:B.【点睛】本题考查全等三角形的判定与性质,三角形的任意两边之和大于第三边,三角形的任意两边之差小于第三边.“遇中线,加倍延”构造全等三角形是解题的关键.2.如图,在△ABC中,AB=4,AC=2,点D为BC的中点,则AD的长可能是()A.1 B.2 C.3 D.4【答案】B【分析】延长AD到E,使DE=AD,连接BE.证△ADC≌△EDB(SAS),可得BE=AC=2,再利用三角形的三边关系求出AE的范围即可解决问题.【详解】解:延长AD到E,使DE=AD,连接BE,在△ADC和△EDB中,,∴△ADC≌△EDB(SAS),∴BE=AC=2,在△ABE中,AB﹣BE<AE<AB+BE,即2<2AD<6,解得1<AD<3,故选:B.【点睛】本题考查了三角形的全等判定和性质,三角形三边关系定理,熟练证明三角形的全等是解题的关键.3.如图,在四边形中,,,,,,点是的中点,则的长为(

).A.2 B. C. D.3【答案】C【分析】延长BE交CD延长线于P,可证△AEB≌△CEP,求出DP,根据勾股定理求出BP的长,从而求出BM的长.【详解】解:延长BE交CD延长线于P,∵AB∥CD,∴∠EAB=∠ECP,在△AEB和△CEP中,∴△AEB≌△CEP(ASA)∴BE=PE,CP=AB=5又∵CD=3,∴PD=2,∵∴∴BE=BP=.故选:C.【点睛】考查了全等三角形的判定和性质和勾股定理,解题的关键是得恰当作辅助线构造全等,依据勾股定理求出BP.4.如图,在ΔABC中,,,平分,、分别是、上的动点,当最小时,的度数为()A. B. C. D.【答案】B【分析】在AC上截取AE=AN,先证明△AME≌△AMN(SAS),推出ME=MN.当B、M、E共线,BE⊥AC时,BM+ME最小,可求出∠NME的度数,从而求出∠BMN的度数.【详解】如图,在AC上截取AE=AN,∵∠BAC的平分线交BC于点D,∴∠EAM=∠NAM,在△AME与△AMN中,,∴△AME≌△AMN(SAS),∴ME=MN.∴BM+MN=BM+ME,当B、M、E共线,BE⊥AC时,BM+ME最小,∴MN⊥AB∵∠BAC=68°∴∠NME=360°-∠BAC-∠MEA-∠MNA=360°-68°-90°-90°=112°,∴∠BMN=180°-112°=68°.故选:B.【点睛】本题考查了轴对称-最短问题,解题的关键是能够通过构造全等三角形,把BM+MN进行转化,利用垂线段最短解决问题.5.如图,已知四边形ABCD中,AD∥BC,若∠DAB的平分线AE交CD于E,连接BE,且BE恰好平分∠ABC,则AB的长与AD+BC的大小关系是()A.AB>AD+BC B.AB<AD+BC C.AB=AD+BC D.无法确定【答案】C【分析】在AB上截取AF=AD,连接EF,易得∠AEB=90°和△ADE≌△AFE,再证明△BCE≌△BFE,利用全等三角形对应边相等即可得出三条线段之间的关系.【详解】解:如图所示,在AB上截取AF=AD,连接EF,∵AD∥BC,∴∠ABC+∠DAB=180°,又∵BE平分∠ABC,AE平分

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论