




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第07讲二次根式了解二次根式的概念理解二次根式有意义的条件,会求二次根式的被开方数中所含字母的取值范围。掌握二次根式的性质,能利用二次根式的性质进行化简知识点1:二次根式二次根式的概念一般地,我们把形如的式子的式子叫做二次根式,称为称为二次根号.二次根式满足条件:必须含有二次根号被开方数必须是非负数如二次根式满足条件:必须含有二次根号被开方数必须是非负数知识点2:二次根式有无意义的条件条件字母表示二次根式有意义被开方数为非负数二次根式无意义被开方数为负数知识点3:二次根式的性质1.的性质符号语言文字语言一个非负数的算数平方根是非负数提示有最小值,为02.的性质符号语言应用正用:逆用:若a≥0,则提示逆用可以再实数范围内分解因式:如3.的性质符号语言a(a>0)0(a=0)-a(a<0)文字语言任意一个数的平方的算术平方根等于这个数的绝对值应用正用:逆用:考点一:根据二次根式概念判断二次根式例1.(2023春•津南区期中)下列各式中,一定是二次根式的个数为()①;②;③;④;⑤;⑥;⑦(x>0);⑧;⑨.A.7个 B.6个 C.5个 D.4个【答案】B【解答】解:①;②;③;④;⑤;⑥;⑦(x>0);⑧;⑨中,只有③;⑥;⑨不符合二次根式的定义,故是二次根式的有6个.故选:B.【变式1-1】(2023春•雄县月考)若为二次根式,则a的值可以是()A.2 B.﹣0.1 C.﹣2 D.﹣5【答案】A【解答】解:∵是二次根式,∴a≥0,∴a的值可以是2.故选:A.【变式1-2】(2023春•金安区校级月考)下列式子中是二次根式的是()A. B. C. D.【答案】C【解答】解:A、中,当a<0时,不是二次根式,故此选项不符合题意;B、中,当x<1时,不是二次根式,故此选项不符合题意;C、,(x+1)2≥0恒成立,因此该式是二次根式,故此选项符合题意;D、中,被开方数﹣2<0,不是二次根式,故此选项不符合题意;故选:C.【变式1-3】(2023春•青秀区校级月考)下列各式是二次根式的是()A. B. C. D.【答案】A【解答】解:A、a2+1≥1,则是二次根式,故此选项符合题意;B、无意义,故此选项不符合题意;C、当a<0时,无意义,故此选项不符合题意;D、属于三次根式,故此选项不符合题意;故选:A.考点二:根据二次根式的定义求字母的值例2.(2023春•崇左月考)已知是正整数,则自然数n的最小值为()A.0 B.2 C.3 D.12【答案】C【解答】解:∵是正整数,n是整数,∴n的最小值是3.故选:C.【变式2-1】(2023春•西青区期中)已知是整数,非负整数n的最小值是()A.4 B.3 C.2 D.0【答案】D【解答】解:∵,且是整数,∴是整数,即2n是完全平方数,∴2n≥0,∴n的最小非负整数值为0,故选:D.【变式2-2】(2020春•江岸区校级期中)已知是整数,则满足条件的最小正整数n为()A.0 B.1 C.2 D.8【答案】C【解答】解:∵=2且是整数∴2n是完全平方数∴正整数n的最小值是2故选:C.【变式2-3】(2023春•天门校级月考)是一个正整数,则n的最小正整数是()A.1 B.2 C.3 D.4【答案】C【解答】解:由是一个正整数,得12﹣n=9,n=3,故选:C.考点三:根据二次根式有意义条件求范围例3.(2023•贵港二模)若在实数范围内有意义,则x的值有可能是()A.0 B.1 C.2 D.3【答案】D【解答】解:∵在实数范围内有意义,∴x﹣3≥0,解得:x≥3,故选:D.【变式3-1】(2023•宁波模拟)使有意义的x的取值,在数轴上表示正确的是()A. B. C. D.【答案】A【解答】解:使有意义,则x+1≥0,解得:x≥﹣1,在数轴上表示为:.故选:A.【变式3-2】(2023•长春模拟)若式子在实数范围内有意义,则x的取值范围是()A.x≤﹣2 B.x≥﹣2 C.x≤2 D.x≥2【答案】C【解答】解:式子在实数范围内有意义,则2﹣x≥0,解得:x≤2.故选:C.【变式3-3】(2023春•淮北月考)若在实数范围内有意义,则x的取值范围为()A.0≤x<1 B.0≤x≤1 C.x≥0且x≠1 D.x>1【答案】A【解答】解:根据题意得:,解得:0≤x<1.故选:A.考点四:根据二次根式有意义求值例4.(2023春•东宝区月考)若,则(x+y)2023等于()A.1 B.5 C.﹣5 D.﹣1【答案】D【解答】解:∵,∴x﹣2≥0,4﹣2x≥0.∴x≥2,x≤2.∴x=2.∴=0+0﹣3=﹣3.∴(x+y)2023=(2﹣3)2023=(﹣1)2023=﹣1.故选:D.【变式4-1】(2022春•高青县期末)若,则(x+y)2022等于()A.1 B.5 C.﹣5 D.﹣1【答案】A【解答】解:∵,∴x﹣2≥0,4﹣2x≥0.∴x≥2,x≤2.∴x=2.∴=0+0﹣3=﹣3.∴(x+y)2022=(2﹣3)2022=(﹣1)2022=1.故选:A.【变式4-2】(2023春•慈溪市期中)若x,y为实数,且++2y=4,则x+y的值为()A.2 B.3 C.5 D.不确定【答案】B【解答】解:由题意,得x﹣1≥0,1﹣x≥0,解得x=1,2y=4y=2.x+y=1+2=3.故选:B.【变式4-3】(2023春•潮南区期中)已知x、y为实数,且y=+1,则x+y的值是()A.2022 B.2023 C.2024 D.2025【答案】C【解答】解:∵x﹣2023≥0,2023﹣x≥0,∴x﹣2023=0,∴x=2023,∴y=1,∴x+y=2023+1=2024,故选:C.考点五:利用二次根式的性质化简(数字型)例5.(2023春•乐清市期中)下列等式正确的是()A. B.=±4 C.=﹣5 D.=1【答案】A【解答】解:A.=,故此选项正确,符合题意;B.=4,故此选项错误,不符合题意;C.=,故此选项错误,不符合题意;D.=,故此选项错误,不符合题意.故选:A.【变式5-1】(2023春•东莞市校级期中)下列式子正确的是()A.=0.6 B.=﹣13 C.=﹣ D.=±7【答案】C【解答】解:A.∵0.62=0.36,∴A选项不符合题意;B.==13,不符合题意;C.负数的立方根是负数,符合题意;D.=7,不符合题意.故选:C.【变式5-2】(2023春•汉阳区期中)化简:=()A. B.﹣2 C.4 D.2【答案】D【解答】解:.故选:D.【变式5-3】(2023春•澄迈县月考)把4根号外的因式移进根号内,结果等于()A.﹣ B. C.﹣ D.【答案】D【解答】解:原式=×=,故选:D.考点六:根据二次根式性质化简(字母及复合型)例6.(2023春•普兰店区期中)实数a,b在数轴上对应点的位置如图所示,化简的结果是()A.﹣a+b B.a﹣b C.﹣b D.b【答案】A【解答】解:由数轴可得:a﹣b<0,故原式=﹣(a﹣b)=﹣a+b.故选:A.【变式6-1】(2022秋•开福区期末)实数a,b在数轴上的位置如图所示,化简+﹣的结果是()A.0 B.﹣2 C.﹣2a D.2b【答案】B【解答】解:由题意得:a<﹣1,b>1,∴a+1<0,b﹣1>0,a﹣b<0,∴原式=|a+1|+|b﹣1|﹣|a﹣b|=﹣(a+1)+b﹣1﹣(b﹣a)=﹣a﹣1+b﹣1﹣b+a=﹣2.故选:B.【变式6-2】(2022秋•安岳县期末)已知实数a在数轴上的位置如图所示,则化简:的结果为()A.2 B.﹣2 C.2a﹣6 D.﹣2a+6【答案】A【解答】解:根据实数a在数轴上的位置得知:2<a<4,即:a﹣2>0,a﹣4<0,故原式=a﹣2+4﹣a=2.故选:A.考点七:根据参数范围及二次根式的性质化简二次根式例7.(2023春•云浮校级期中)若1<x<3,则|x﹣3|+的值为()A.2x﹣4 B.﹣2 C.2 D.4﹣2x【答案】C【解答】解:∵1<x<3,∴x﹣1>0,x﹣3<0,原式=|x﹣3|+|x﹣1|=﹣(x﹣3)+(x﹣1)=﹣x+3+x﹣1=2.故选:C.【变式7-1】(2023春•武穴市月考)已知1<a<3,那么化简代数式﹣的结果是()A.5﹣2a B.2a﹣5 C.﹣3 D.3【答案】B【解答】解:∵1<a<3,∴a﹣1>0,a﹣3<0,∴﹣=|a﹣1|﹣|a﹣4|=a﹣1+a﹣4=2a﹣5,故选:B.【变式7-2】(2023春•东湖区校级期中)已知﹣1<x<3,化简:=4.【答案】4.【解答】解:∵1<x<3,∴x﹣3<0、x+1>0,则原式=|x﹣3|+|x+1|=3﹣x+x+1=4,故答案为:4.考点八:含隐含条件的参数范围化简二次根式例8.(2023春•花山区校级期中)化简的结果是()A. B. C. D.【答案】B【解答】解:∵有意义,∴a﹣1>0,∴1﹣a<0,∴=﹣(a﹣1)=﹣=﹣.故选:B.【变式8-1】(2023春•黄陂区校级月考)把根号外的因式移入根号内,结果为()A. B. C. D.【答案】B【解答】解:由已知可得:,∴x﹣1<0,即1﹣x>0,∴.故选:B.【变式8-2】(2023春•德城区校级月考)若某三角形的三边长分别为2,5,n,则化简+|8﹣n|的结果为()A.5 B.2n﹣10 C.2n﹣6 D.10【答案】A【解答】解:∵三角形的三边长分别为2,5,n,∴5﹣2<n<5+2,∴3<n<7,∴+|8﹣n|=|3﹣n|+|8﹣n|=n﹣3+8﹣n=5,故选:A.考点九:复杂的复合二次根式化简例9.(2022春•宜秀区校级月考)已知|2020﹣a|+=a,则4a﹣40402的值为()A.8084 B.6063 C.4042 D.2021【答案】A【解答】解:由题意得,a﹣2021≥0,解得,a≥2021,原式变形为:a﹣2020+=a,则=2020,∴a﹣2021=20202,∴4a=4×20202+8084,∴4a﹣40402=40402+8084﹣40402=8084,故选:A.1.(2022•广州)代数式有意义时,x应满足的条件为()A.x≠﹣1 B.x>﹣1 C.x<﹣1 D.x≤﹣1【答案】B【解答】解:代数式有意义时,x+1>0,解得:x>﹣1.故选:B.2.(2023•番禺区一模)下列计算正确的是()A.=2 B.=﹣2 C.=2 D.=±2【答案】A【解答】解:A.正确;符合题意.B.=2;不符合题意.C.=﹣2;不符合题意.D.=2;不符合题意.故选:A.3.(2021•益阳)将化为最简二次根式,其结果是()A. B. C. D.【答案】D【解答】解:==,故选:D.4.(2023•潮南区模拟)实数a,b在数轴上对应点的位置如图,则化简的结果为()A.2a﹣b B.2a+b C.b D.﹣2a+b【答案】C【解答】解:由图可得:a<0,b>0,|a|<|b|,∴+|a+b|=|a|+(a+b)=﹣a+a+b=b.故选:C.1.(2023春•巴南区期中)下列式子一定是二次根式是()A. B.π C. D.【答案】D【解答】解:A、该代数式无意义,不符合题意;B、π是无理数,不是二次根式,故此选项不合题意;C、该代数式是三次根式,故此选项不合题意;D、是二次根式,故此选项符合题意.故选:D.2.(2023春•荆州月考)若是整数,则正整数a的最小值是()A.4 B.5 C.6 D.7【答案】C【解答】解:;由是整数,得a最小值为6,故选:C.3.(2022春•裕安区校级期中)若x,y为实数,且y=2++,则|x+y|的值是()A.5 B.3 C.2 D.1【答案】A【解答】解:∵,∴,∴x=3,∴y=2,∴|x+y|=|3+2|=5,故选:A.4.(2023•萧山区模拟)下列各式中,正确的是()A.=﹣4 B.=﹣2 C.=3 D.=±4【答案】C【解答】解:A.=|﹣4|=4,因此选项A不符合题意;B.由于负数没有平方根,因此无意义,因此选项B不符合题意;C.,即9的算术平方根,9的算术平方根是3,所以=3,因此选项C符合题意;D.,即16的算术平方根,16的算术平方根是4,所以=4,因此选项D不符合题意;故选:C.5.(2023春•涡阳县期中)化简的结果是()A.3﹣π B.﹣3﹣π C.π﹣3 D.π+3【答案】C【解答】解:原式=|3﹣π|=π﹣3,故选:C.6.(2022秋•鼓楼区校级期末)实数a在数轴上的位置如图所示,则化简结果为()A.7 B.﹣7 C.2a﹣15 D.无法确定【答案】A【解答】解:∵由图可知:4<a<10,∴a﹣4>0,a﹣11<0,∴原式=+=a﹣4+11﹣a=7.故选:A.7.(2023春•大冶市期中)实数a、b在数轴上对应的点的位置如图所示,则化简﹣|a﹣b|+得()A.0 B.2a C.2b D.﹣2b【答案】A【解答】解:根据数轴得a<0,b>0,a﹣b<0,原式=|a|﹣|a﹣b|+|b|=﹣a+a﹣b+b=0,故选:A.8.(2022秋•大名县期末)化简二次根式的结果为()A.﹣2a B.2a C.2a D.﹣2a【答案】A【解答】解:∵﹣8a3≥0,∴a≤0∴=2|a|=﹣2a故选:A.9.(2023春•泰山区校级期中)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《计算机辅助设计(ps)》课件-第七模块蒙版
- 新教材高中生物选择性必修2课件:4 2 生物多样性及其保护(人教版)
- 疫情防知识课件
- 大雪纷飞幼儿课件
- 食品包装防潮材料选择标准
- app报价合同标准文本
- 业务员工作总结及计划
- 公司商品转让合同标准文本
- 护理服务体验案例分享
- 个人赔偿合同标准文本
- 工程可行性研究报告编写实施计划方案
- 北京市顺义一中2023-2024学年高一下学期3月月考生物试题2
- 重度哮喘诊断与处理中国专家共识(2024版)解读
- 政府公共关系-形考作业2-国开(GD)-参考资料
- 联合伟世:2024年中国人工智能人才发展报告
- 应征公民体格检查表
- 第九课 中望3D-钣金设计 (1)讲解
- JT-T-1178.2-2019营运货车安全技术条件第2部分:牵引车辆与挂车
- 祛斑签约合同
- 流行病学实验性研究案例分析
- 金融系统气候风险的评估、定价与政策应对:基于文献的评述
评论
0/150
提交评论