版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第第页答案第=page11页,共=sectionpages22页人教版七年级数学上册《5.2解一元一次方程》同步练习题含答案学校:___________班级:___________姓名:___________考号:___________一、单选题1.关于x的方程与的解相同,则m等于(
)A.5 B.4 C. D.2.方程的解是(
)A. B. C. D.3.解方程,去分母后正确的是()A. B.C. D.4.下列方程变形正确的是(
)A.方程移项得;B.方程,去括号,得;C.若,则;D.方程化成;5.小马虎在做作业,不小心将方程中的一个常数污染了,怎么办?他翻开书后的答案,发现方程的解是.请问这个被污染的常数是()A.1 B.2 C.3 D.46.设,有,则y的值是(
)A. B.4 C. D.17.小强在解方程“”时,将“”中的“-”抄漏了,得出,则原方程正确的解是()A. B. C. D.8.“”表示一种运算,已知,,,按此规则,若,则的值为(
)A.3 B.4 C.5 D.6二、填空题9.代数式与互为相反数,则.10.代数式的值等于代数式的值,则.11.方程,■处是被墨水盖住的常数,已知方程的解是,那么■处的常数是.12.解方程:,则.13.数形结合是解决数学问题的重要思想方法.例如,代数式的几何意义是“数轴上所对应的点与2所对应的点之间的距离”,请根据上述材料,尝试解决下列问题:的最小值是5,则.14.爱动脑筋的小明同学设计了如图所示的“幻方”游戏图,将1,,3,,5,,7,分别填入图中的圆圈内,使得横、竖以及内外两个正方形的4个数字之和都相等,他已经将、5、7、这四个数填入了圆圈,则图中的值为.三、解答题15.解下列方程:(1);(2).16.某同学在解关于x的方程时,移项过程中没有改变符号,得到方程的解为.求a的值及原方程的解.17.已知方程与关于x的方程的解相同.(1)求a的值;(2)若a、b在数轴上对应的点在原点的两侧,且到原点的距离相等,c是最大的负整数,求的值.18.新定义一种运算:.例如:.(1)求的值;(2)解方程:.19.定义:若,则称a与b是关于2的平衡数.(1)3与__________是关于2的平衡数,与__________(填一个含x的式子)是关于2的平衡数;(2)若,判断a与b是不是关于2的平衡数,并说明理由;(3)若,且c与d是关于2的平衡数,x为正整数,求非负整数k的值.20.根据绝对值定义,若有,则或,若,则,我们可以根据这样的结论,解一些简单的绝对值方程,例如:.解:方程可化为:或,当时,则有,;当时,则有,;综上,方程的解为或.(1)解方程:;(2)已知,求的值.参考答案题号12345678答案ADBDBBAB1.A【分析】本题考查方程的解,解一元一次方程,先求出的解,代入得到关于m的一元一次方程,再解方程即可.【详解】解:解,得:,将代入,得:,解得,故选A.2.D【分析】本题考查了解一元一次方程,解题的关键是熟练的掌握一元一次方程的性质与运算方法.解这个方程需要去括号,然后移项、合并同类项最后系数化1可求出x的值.【详解】解:去括号得:,移项,合并同类项得:,系数化为1得:,故选D.3.B【分析】本题考查了解一元一次方程,根据等式的性质去分母,方程两边同时乘以,即可求解.【详解】解:方程两边同时乘以得,故选:B.4.D【分析】本题考查了解一元一次方程中的变形,涉及移项、去括号、等式的性质2等知识,这是在解方程时也容易出错的地方;按照解方程的过程逐项检查即可.【详解】解:A、方程左边的常数项1没有移项而改变了符号,故错误;B、乘法分配律与去括号错误,利用分配律时漏乘了5,且去括号时没有变号,故错误;C、当a为0时,不成立,故错误;D、原方程化为,去括号、移项、合并同类项后得:,故变形正确;故选:D.5.B【分析】本题考查的是一元一次方程的解得定义以及一元一次方程的解法,掌握方程的解得定义是解题的关键.设被污染的数字为y,将代入,得到关于y的方程,从而可求得y的值.【详解】解:设被污染的数字为y.将代入得:.解得:.故选:B.6.B【分析】此题考查解一元一次方程,根据题意列得方程求解即可,正确掌握一元一次方程的解法是解题的关键.【详解】解:设,,则去括号得解得故选:B.7.A【分析】本题考查了解一元一次方程和一元一次方程的解的应用,能求出的值是解此题的关键.把代入方程求出的值,确定出正确的方程,求出解即可.【详解】解:把代入方程,得,解得,原方程为:解这个方程,得.故选:A.8.B【分析】本题主要考查了数字类规律的探索,解一元一次方程,观察所给三个式子可得“”运算表示的是,从“”前面的数开始的连续的整数求和,“”后面的数表示的是有多少个整数求和,据此可得,解方程即可得到答案.【详解】解:,,,……,以此类推可知,“”运算表示的是,从“”前面的数开始的连续的整数求和,“”后面的数表示的是有多少个整数求和,∵,∴,∴,故选:B.9.【分析】本题考查了互为相反数的两个数的运算特征:互为相反数的两个的和为零,解一元一次方程;由题意得:,由此式求得a的值.【详解】解:因为与互为相反数,所以,即,解得:;故答案为:.10.3【分析】本题考查的是一元一次方程的应用,根据题意可得,再解方程即可.【详解】解:由题意得:,解得:,故答案为:3.11.【分析】本题主要考查的是一元一次方程的解的定义,熟练掌握方程的解就是能够使方程左右两边相等的未知数的值是解题的关键.将,代入方程中,求出■的值即可.【详解】将,代入方程中,得,解得,故答案为:.12.【分析】本题考查了解一元一次方程,根据解一元一次方程的方法求解即可.【详解】解:,去分母,得,即,移项、合并同类项,得,将系数化为1,得.故答案为:.13.4或【分析】此题考查了解一元一次方程,数轴,绝对值.根据原式的最小值为5,分两种情况:或,列等式解答即可.【详解】解:∵的最小值是5,且,∴要分两种情况:①当时,,∴;②当时,,∴;综上,a的值是4或.故答案为:4或.14.或【分析】本题考查的是有理数的加法及解一元一次方程、求代数式的值,关键在于理解题意,正确计算出a、b的值.因为这8个数字的和是,所以横、竖以及内外两个正方形的4个数字之和都等于,因此;内圈右边的圆圈应填3,则或,或.【详解】解∶这8个数字的和是,横、竖以及内外两个正方形的4个数字之和都等于,根据题意有∶,解得;根据内圈正方形的4个数字之和等于,得内圈右边的圆圈应填3,则或.因此,或.故答案为:或.15.(1);(2).【分析】本题考查解一元一次方程,熟练掌握基本方法是解题关键.(1)先移项,然后合并同类项,系数化为1,即可解题;(2)先去分母,再去括号,移项,合并同类项,系数化为1,即可解题.【详解】(1)解:,,,.(2)解:,,,,,.16.a的值为3,【分析】本题考查方程的错解复原问题,将错就错求出的值,再解方程即可.【详解】解:根据题意,得是关于x的方程的解,∴,解得.把代入原方程,得,解得,所以a的值为3,原方程的解是.17.(1)(2)1【分析】本题考查同解方程,有理数的乘方运算:(1)先求出方程的解,再把解代入方程中,进行求解即可;(2)易得互为相反数,,然后根据有理数的运算法则进行计算即可.【详解】(1)解:,,解得:,把代入,得:,解得:;(2)∵a、b在数轴上对应的点在原点的两侧,且到原点的距离相等,∴,∵c是最大的负整数,∴,∴.18.(1)25(2)【分析】本题主要考查有理数的运算和解一元一次方程,牢记有理数运算的法则和解一元一次方程的步骤是解题的关键.(1)按照新运算计算即可;(2)按照新运算转化为,再解方程即可.【详解】(1)解:;(2)解:∵,∴,解得:.19.(1),(2)a与b是关于2的平衡数,理由见解析(3)非负整数k的值为0或1或3【分析】本题考查整式的加减,解一元一次方程,解题的关键读懂“关于2的平衡数”的定义.(1)根据“关于2的平衡数”定义列式计算即可;(2)求出根据整式的加减计算法则求出,再根据“关于2的平衡数”的定义判断;(3)根据已知列出方程,由x为正整数即可得到答案.【详解】(1)解:∵,∴3与是关于2的平衡数.∵,∴与是关于2的平衡数;(2)解:a与b是关于2的平衡数,理由如下:∵,∴,∴a与b是关于2的平衡数;(3)解:∵c与d是关于2的平衡数,∴,∵,∴,∴.∵x为正整数,k为非负整数,∴当时,,解得,当时
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《EXCEL与财务会计》课件
- 合伙合同纠纷办案小结
- 工程招投标与合同管理实训指导书
- 《Final砌筑工艺》课件
- 2025年恩施驾校考试货运从业资格证考试
- 2025年长春货运从业资格证考试技巧
- 2025年西藏货运资格证考题
- 大型展览中心钢结构施工合同样本
- 餐厅折叠门施工协议
- 苏教版九年级数学上册知识点总结
- 职业生涯规划-体验式学习知到智慧树章节测试答案2024年秋华侨大学
- 人教PEP版(2024)三年级上册英语Unit 4《Plants around us》单元作业设计
- 2024年秋季新统编版七年级上册道德与法治全册教案
- DL∕T 5362-2018 水工沥青混凝土试验规程
- DL-T5054-2016火力发电厂汽水管道设计规范
- 交响音乐赏析智慧树知到期末考试答案章节答案2024年西安交通大学
- 个人租房合同标准版打印
- 大学生心理健康与发展学习通超星课后章节答案期末考试题库2023年
- 企业技术标准化管理
- 投资学第19章财务分析stu
- 已有输华贸易的国家(地区)及水产品品种目录
评论
0/150
提交评论