河南省2022年普通高等学校对口招收中等职业学校毕业生考试数学试卷答案_第1页
河南省2022年普通高等学校对口招收中等职业学校毕业生考试数学试卷答案_第2页
河南省2022年普通高等学校对口招收中等职业学校毕业生考试数学试卷答案_第3页
河南省2022年普通高等学校对口招收中等职业学校毕业生考试数学试卷答案_第4页
河南省2022年普通高等学校对口招收中等职业学校毕业生考试数学试卷答案_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河南省2022年普通高等学校对口招收中等职业学校毕业生考试数学考生注意:所有答案都要写在答题卡上,写在试题卷上无效一、选择题:每小题3分,共30分.每小题中只有一个选项是正确的,请将正确选项涂在答题卡上.1.“”是“”的()A.充分条件 B.必要条件 C.充要条件 D.既不充分也不必要条件【答案】A【解析】根据小范围能够推出大范围,大范围推不出小范围可知,能推出,但推不出,所以“”是“”的充分条件,故选:A.2.数集,用区间表示为()A. B. C. D.【答案】C【解析】根据区间的符号可知,数集,用区间表示为:,故选:C.3.下列函数中,是偶函数且在上单调递增的为()A. B. C. D.【答案】B【解析】由函数的图像可知,为开口向上,顶点坐标为,对称轴为y轴的抛物线,符合题意,故选:B.4.假定此时12点整,那么1个小时后时针与分针的夹角是()A.0 B. C. D.【答案】D【解析】1个小时后,时针指在1点整的位置,分针指在12点整的位置,时针与分针的夹角为,故选:D.5.老王用10万元购买银行某理财产品,期限2年,假设该产品行情较好,年利率为,那么2年后,老王的本息合计为()A.11万元 B.12万元 C.12.1万元 D.14.4万元【答案】C【解析】本金10万,年利率为,1年后本息和为:万,2年后本息和为:万,故选:C.6.若为等比数列,且,,则()A.54 B.72 C.81 D.162【答案】D【解析】因为,,所以,,故选:D.7.已知直线的倾斜角是直线倾斜角的2倍,则()A. B. C. D.【答案】A【解析】由,得,则的斜率为,倾斜角为,所以的倾斜角,故选A.8.在空间中,以下说法正确的是()A.若,,则B.平行于同一平面的两条直线平行C.过直线外一点有且只有一条直线与已知直线垂直D.过直线外一点有且只有一条直线与已知直线平行【答案】D【解析】A选项,若,,则与不一定垂直,可能共线,A不正确;B选项,平行于同一平面的两条直线不一定平行,可能异面、相交,B不正确;C选项,过直线外一点有无数条直线与已知直线垂直,C不正确;D选项,过直线外一点有且只有一条直线与已知直线平行,D正确,故选:D.9.若,则的值为()A.2 B.3 C.5 D.6【答案】B【解析】若,则,,故选:B.10.小张投篮,第一次命中的概率为0.3,如果第一次没命中,那么第二次命中的概率增加0.1,则连续两次都没命中的概率为()A. B. C. D.【答案】C【解析】第一次未命中的概率为1-0.3=0.7,如果第一次没命中,第二次命中的概率为0.1+0.3=0.4,则如果第一次没命中,第二次未命中的概率为1-0.4=0.6,所以连续两次都没命中的概率为:0.7×0.6=0.42,故选:C.二、填空题:每小题3分,共24分.11.设集合是18的全体约数组成的集合,则表示为__________.【答案】【解析】18的全体约数组成的集合为:,故答案为:,12.将写成分数指数幂的形式为___________.【答案】【解析】写成分数指数幂的形式为:,故答案为:.13.已知,是第四象限角,则___________.【答案】【解析】,是第四象限角,则,,故答案为:.14.若等差数列满足,则___________.【答案】297【解析】在等差数列中,,故答案为:297.15.已知向量,,则__________.【答案】【解析】,故答案为:.16.在平面直角坐标系中,点到直线的距离为__________.【答案】1【解析】点,直线为:,由点到直线的距离公式得:,故答案为:1.17.圆锥的轴截面是面积为的等边三角形,则圆锥体积为__________.【答案】【解析】设轴截面的边长为,由三角形的面积公式可得:,,即圆锥的底面直径为12,则半径为6,圆锥的高为:,所以圆锥的体积为;,故答案为:.18.若事件为必然事件,则其对立事件的概率等于__________.【答案】0【解析】由,,得,故答案为:0.三、计算题:每小题8分,共24分.19.解绝对值不等式.【答案】或者【解析】解:原不等式可化为 2分两端同时加5,得, 2分解得, 2分故原不等式的解集为或者. 2分20.已知函数是定义在上的奇函数,且,求函数的表达式.【答案】【解析】解:由是奇函数,故有, 1分即 2分得,得; 2分由得,解得, 2分故. 1分21.已知直线经过点,且与直线垂直,求直线的方程.【答案】【解析】解法一:直线化为斜截式即, 2分斜率为,所求直线与该直线垂直,故斜率, 2分由直线方程的点斜式可得, 2分化简可得直线的方程为, 2分解法二:直线与直线垂直,可设, 3分将代入上式,可得,从而, 2分故直线的方程为. 3分四、证明题:每小题6分,共12分.22.已知,求证:.【答案】证明见解析【解析】证明:根据诱导公式,,,,∵,∴, 2分原式左边右边, 3分即. 1分23.如图1所示,是圆的一条直径,垂直于圆所在的平面,是圆上不同于、的任意一点,求证:平面平面.【答案】证明见解析【解析】证明:∵是圆的一条直径,是圆上不同于、的任意一点,∴是直角,即, 2分又垂直于圆所在的平面,∴ 2分从而平面,故平面平面.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论