版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Page专题58分类加法计数原理与分步乘法计数原理(新高考专用)目录目录【知识梳理】 2【真题自测】 2【考点突破】 3【考点1】分类加法计数原理的应用 3【考点2】分步乘法计数原理的应用 4【考点3】两个计数原理的综合应用 6【分层检测】 8【基础篇】 8【能力篇】 10考试要求:1.通过实例,了解分类加法计数原理、分步乘法计数原理及其意义.2.能解决简单的实际问题.知识梳理知识梳理1.分类加法计数原理完成一件事有两类不同方案,在第1类方案中有m种不同的方法,在第2类方案中有n种不同的方法.那么完成这件事共有N=m+n种不同的方法.2.分步乘法计数原理完成一件事需要两个步骤,做第1步有m种不同的方法,做第2步有n种不同的方法,那么完成这件事共有N=m×n种不同的方法.3.分类加法和分步乘法计数原理,区别在于:分类加法计数原理针对“分类”问题,其中各种方法相互独立,用其中任何一种方法都可以做完这件事;分步乘法计数原理针对“分步”问题,各个步骤中的方法相互依存,只有各个步骤都完成了才算完成这件事.分类加法计数原理与分步乘法计数原理是解决排列组合问题的基础,并贯穿其始终.(1)分类加法计数原理中,完成一件事的方法属于其中一类,并且只属于其中一类.(2)分步乘法计数原理中,各个步骤中的方法相互依存,步与步之间“相互独立,分步完成”.真题自测真题自测一、单选题1.(2023·全国·高考真题)现有5名志愿者报名参加公益活动,在某一星期的星期六、星期日两天,每天从这5人中安排2人参加公益活动,则恰有1人在这两天都参加的不同安排方式共有(
)A.120 B.60 C.30 D.202.(2023·全国·高考真题)甲乙两位同学从6种课外读物中各自选读2种,则这两人选读的课外读物中恰有1种相同的选法共有(
)A.30种 B.60种 C.120种 D.240种3.(2023·全国·高考真题)某学校为了解学生参加体育运动的情况,用比例分配的分层随机抽样方法作抽样调查,拟从初中部和高中部两层共抽取60名学生,已知该校初中部和高中部分别有400名和200名学生,则不同的抽样结果共有(
).A.种 B.种C.种 D.种4.(2023·全国·高考真题)某校文艺部有4名学生,其中高一、高二年级各2名.从这4名学生中随机选2名组织校文艺汇演,则这2名学生来自不同年级的概率为(
)A. B. C. D.二、填空题5.(2024·上海·高考真题)设集合中的元素皆为无重复数字的三位正整数,且元素中任意两个不同元素之积皆为偶数,求集合中元素个数的最大值.6.(2023·全国·高考真题)某学校开设了4门体育类选修课和4门艺术类选修课,学生需从这8门课中选修2门或3门课,并且每类选修课至少选修1门,则不同的选课方案共有种(用数字作答).考点突破考点突破【考点1】分类加法计数原理的应用一、单选题1.(2023·湖南·模拟预测)第19届亚运会将于2023年9月23日至10月8日在杭州举行,甲、乙等4名杭州亚运会志愿者到游泳、射击、体操三个场地进行志愿服务,每名志愿者只去一个场地,每个场地至少一名志愿者,若甲不去游泳场地,则不同的安排方法共有(
)A.12种 B.18种 C.24种 D.36种2.(2024·贵州贵阳·模拟预测)2024年3月16日下午3点,在贵州省黔东南苗族侗族自治州榕江县“村超”足球场,伴随平地村足球队在对阵口寨村足球队中踢出的第一脚球,2024年第二届贵州“村超”总决赛阶段的比赛正式拉开帷幕.某校足球社的五位同学准备前往村超球队所在村寨调研,将在第一天前往平地村、口寨村、忠诚村,已知每个村至少有一位同学前往,五位同学都会进行选择并且每位同学只能选择其中一个村,若学生甲和学生乙必须选同一个村,则不同的选法种数是(
)A.18 B.36 C.54 D.72二、多选题3.(2024·重庆·模拟预测)如图,16枚钉子钉成4×4的正方形板,现用橡皮筋去套钉子,则下列说法正确的有(不同的图形指两个图形中至少有一个顶点不同)(
)A.可以围成20个不同的正方形B.可以围成24个不同的长方形(邻边不相等)C.可以围成516个不同的三角形D.可以围成16个不同的等边三角形三、填空题4.(22-23高三下·浙江杭州·阶段练习)在一个圆周上有8个点,用四条既无公共点又无交点的弦连结它们,则连结方式有种.5.(2024·黑龙江哈尔滨·一模)有序实数组称为维向量,为该向量的范数,范数在度量向量的长度和大小方面有着重要的作用.已知维向量,其中.记范数为奇数的的个数为,则;.(用含的式子表示)6.(2024·黑龙江齐齐哈尔·一模)第33届奥运会于2024年7月26日至8月11日在法国巴黎举行,某高校需要选派4名大学生去当志愿者,已知该校现有9名候选人,其中4名男生,5名女生,则志愿者中至少有2名女生的选法有种(用数字作答).反思提升:分类标准是运用分类加法计数原理的难点所在,应抓住题目中的关键词、关键元素和关键位置.(1)根据题目特点恰当选择一个分类标准.(2)分类时应注意完成这件事情的任何一种方法必须属于某一类,并且分别属于不同种类的两种方法才是不同的方法,不能重复.(3)分类时除了不能交叉重复外,还不能有遗漏.【考点2】分步乘法计数原理的应用一、单选题1.(23-24高二上·辽宁·期末)某校高三年级有8名同学计划高考后前往武当山、黄山、庐山三个景点旅游.已知8名同学中有4名男生,4名女生.每个景点至少有2名同学前往,每名同学仅选一处景点游玩,其中男生甲与女生不去同一处景点游玩,女生与女生去同一处景点游玩,则这8名同学游玩行程的方法数为(
)A.564 B.484 C.386 D.6402.(2023·河南开封·模拟预测)有2男2女共4名大学毕业生被分配到三个工厂实习,每人必须去一个工厂且每个工厂至少去1人,且工厂只接收女生,则不同的分配方法种数为(
)A.12 B.14 C.36 D.72二、多选题3.(23-24高二上·四川·阶段练习)有五名志愿者参加社区服务,共服务周六、周天两天,每天从中任选两人参加服务,则(
)A.只有1人未参加服务的选择种数是30种B.恰有1人连续参加两天服务的选择种数是40种C.只有1人未参加服务的选择种数是60种D.恰有1人连续参加两天服务的选择种数是60种4.(2024·甘肃·一模)下列说法正确的有(
)A.数据的第75百分位数是40B.若,则C.4名学生选报3门校本选修课,每人只能选其中一门,则总选法数为种D.展开式中项的二项式系数为56三、填空题5.(2024·福建厦门·一模)《九章算术》、《数书九章》、《周髀算经》是中国古代数学著作,甲、乙、丙三名同学计划每人从中选择一种来阅读,若三人选择的书不全相同,则不同的选法有种.6.(2024·山东潍坊·一模)第40届潍坊国际风筝会期间,某学校派人参加连续天的志愿服务活动,其中甲连续参加天,其他人各参加天,则不同的安排方法有种.(结果用数值表示)一、单选题1.(23-24高二上·辽宁·期末)某校高三年级有8名同学计划高考后前往武当山、黄山、庐山三个景点旅游.已知8名同学中有4名男生,4名女生.每个景点至少有2名同学前往,每名同学仅选一处景点游玩,其中男生甲与女生不去同一处景点游玩,女生与女生去同一处景点游玩,则这8名同学游玩行程的方法数为(
)A.564 B.484 C.386 D.6402.(2023·河南开封·模拟预测)有2男2女共4名大学毕业生被分配到三个工厂实习,每人必须去一个工厂且每个工厂至少去1人,且工厂只接收女生,则不同的分配方法种数为(
)A.12 B.14 C.36 D.72二、多选题3.(23-24高二上·四川·阶段练习)有五名志愿者参加社区服务,共服务周六、周天两天,每天从中任选两人参加服务,则(
)A.只有1人未参加服务的选择种数是30种B.恰有1人连续参加两天服务的选择种数是40种C.只有1人未参加服务的选择种数是60种D.恰有1人连续参加两天服务的选择种数是60种4.(2024·甘肃·一模)下列说法正确的有(
)A.数据的第75百分位数是40B.若,则C.4名学生选报3门校本选修课,每人只能选其中一门,则总选法数为种D.展开式中项的二项式系数为56三、填空题5.(2024·福建厦门·一模)《九章算术》、《数书九章》、《周髀算经》是中国古代数学著作,甲、乙、丙三名同学计划每人从中选择一种来阅读,若三人选择的书不全相同,则不同的选法有种.6.(2024·山东潍坊·一模)第40届潍坊国际风筝会期间,某学校派人参加连续天的志愿服务活动,其中甲连续参加天,其他人各参加天,则不同的安排方法有种.(结果用数值表示)反思提升:1.利用分步乘法计数原理解决问题要按事件发生的过程合理分步,即分步是有先后顺序的,并且分步必须满足:完成一件事的各个步骤是相互依存的,只有各个步骤都完成了,才算完成这件事.2.分步必须满足两个条件:一是步骤互相独立,互不干扰;二是步与步确保连续,逐步完成.【考点3】两个计数原理的综合应用一、单选题1.(23-24高三上·江西南昌·阶段练习)某植物园要在如图所示的5个区域种植果树,现有5种不同的果树供选择,要求相邻区域不能种同一种果树,则共有(
)种不同的方法.
A.120 B.360 C.420 D.4802.(2024·全国·模拟预测)“142857”这一串数字被称为走马灯数,是世界上著名的几个数之一,当142857与1至6中任意1个数字相乘时,乘积仍然由1,4,2,8,5,7这6个数字组成.若从1,4,2,8,5,7这6个数字中任选4个数字组成无重复数字的四位数,则在这些组成的四位数中,大于5200的偶数个数是(
)A.87 B.129 C.132 D.138二、多选题3.(22-23高二下·贵州贵阳·阶段练习)甲、乙、丙、丁4人做传接球训练,球从甲手中开始,等可能地随机传向另外3人中的1人,接球者接到球后再等可能地随机传向另外3人中的1人,如此不停地传下去,假设传出的球都能接住.记第次传球之前球在甲手中的概率为,易知.下列选项正确的是(
)A.B.为等比数列C.设第次传球之前球在乙手中的概率为D.第4次传球后,球落在乙手中的传球方式有20种4.(22-23高二下·山东枣庄·阶段练习)现有4个兴趣小组,第一、二、三、四组分别有6人、7人、8人、9人,则下列说法正确的是(
)A.选1人为负责人的选法种数为30B.每组选1名组长的选法种数为3024C.若推选2人发言,这2人需来自不同的小组,则不同的选法种数为335D.若另有3名学生加入这4个小组,可自由选择小组,且第一组必有人选,则不同的选法有35种三、填空题5.(22-23高二下·湖北·期中)用0~9十个数字排成三位数,允许数字重复,把个位、十位、百位的数字之和等于9的三位数称为“长久数”,则“长久数”一共有个.6.(2023·陕西宝鸡·一模)七巧板是古代劳动人民智慧的结晶.如图是某同学用木板制作的七巧板,它包括5个等腰直角三角形、一个正方形和一个平行四边形.若用四种颜色给各板块涂色,要求正方形板块单独一色,其余板块两块一种颜色,而且有公共边的板块不同色,则不同的涂色方案有种.反思提升:1.在综合应用两个原理解决问题时应注意:(1)一般是先分类再分步.在分步时可能又用到分类加法计数原理.(2)对于较复杂的两个原理综合应用的问题,可恰当地列出示意图或列出表格,使问题形象化、直观化.2.解决涂色问题,可按颜色的种数分类,也可按不同的区域分步完成.分层分层检测【基础篇】一、单选题1.(2023·广东广州·模拟预测)小明在某一天中有七个课间休息时段,为准备“小歌手”比赛他想要选出至少一个课间休息时段来练习唱歌,但他希望任意两个练习的时间段之间都有至少两个课间不唱歌让他休息,则小明一共有(
)种练习的方案.A.31 B.18 C.21 D.332.(2023·河北唐山·一模)将英文单词“”中的6个字母重新排列,其中字母b不相邻的排列方法共有(
)A.120种 B.240种 C.480种 D.960种3.(2022·辽宁·二模)重庆九宫格火锅,是重庆火锅独特的烹饪方式.九宫格下面是相通的,实现了“底同火不同,汤通油不通”它把火锅分为三个层次,不同的格子代表不同的温度和不同的牛油浓度,其锅具抽象成数学形状如图(同一类格子形状相同):“中间格“火力旺盛,不宜久煮,适合放一些质地嫩脆、顷刻即熟的食物;“十字格”火力稍弱,但火力均匀,适合煮食,长时间加热以锁住食材原香;“四角格”属文火,火力温和,适合焖菜,让食物软糯入味.现有6种不同食物(足够量),其中1种适合放入中间格,3种适合放入十字格,2种适合放入四角格.现将九宫格全部放入食物,且每格只放一种,若同时可以吃到这六种食物(不考虑位置),则有多少种不同放法(
)A.108 B.36 C.9 D.64.(2023·云南昆明·模拟预测)如图所示某城区的一个街心花园,共有五个区域,中心区域E已被设计为代表城市特点的一个标志性塑像,要求在周围ABCD四个区域中种植鲜花,现有四个品种的鲜花可供选择,要求每个区域只种一个品种且相邻区域所种品种不同,则不同的种植方法的种数为(
)A.12 B.24 C.48 D.84二、多选题5.(2023·湖南·三模)已知一组数据:0,1,2,4,则下列各选项正确的是(
)A.该组数据的极差,中位数,平均数之积为10B.该组数据的方差为2.1875C.从这4个数字中任取2个不同的数字可以组成8个两位数D.在这4个数字中任取2个不同的数字组成两位数,从这些两位数中任取一数,取得偶数的概率为三、填空题6.(2023·河北保定·一模)某校为促进拔尖人才培养开设了数学、物理、化学、生物、信息学五个学科竞赛课程,现有甲、乙、丙、丁四位同学要报名竞赛课程,由于精力和时间限制,每人只能选择其中一个学科的竞赛课程,则恰有两位同学选择数学竞赛课程的报名方法数为.7.(22-23高三·广东汕头·阶段练习)如果一个四位数的各位数字互不相同,且各位数字之和等于10,则称此四位数为“完美四位数(如1036),则由数字0,1,2,3,4,5,6,7构成的“完美四位数”中,奇数的个数为.8.(2023·安徽·模拟预测)数学课上,老师出了一道智力游戏题.如图所示,平面直角坐标系中有一个3乘3方格图(小正方形边长为1),一共有十六个红色的格点,游戏规则是每一步可以改变其中一个点的颜色(只能由红变绿或绿变红),如将其中任何一个点由红色改成绿色,则这个点周围与之相邻的点也要从原来的颜色变成另外一种颜色,比如选择变成绿色,则与之相邻的,,,四个点也要变成绿色,那么最少需要步,才能使得位于直线上的四个点变成绿色,而其他点都是红色.【能力篇】一、单选题1.(23-24高三上·山西·期末)某小组两名男生和两名女生邀请一名老师排成一排合影留念,要求两名男生不相邻,两名女生也不相邻,老师不站在两端,则不同的排法共有(
)A.48种 B.32种 C.24种 D
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年峨眉山市人民医院高层次卫技人才招聘笔试历年参考题库频考点附带答案
- 城南旧事读书心得七年级作文800字【7篇】
- 2024年甲肝疫苗项目可行性研究报告
- 北京市房屋租赁合同自行成交版租房
- 老员工辞职申请书15篇
- 石材打磨结晶面护理合同
- 煤炭个人购销合同
- 2024年中国砂椎开瓶器市场调查研究报告
- 2025版空房租赁与绿色建筑节能评估服务合同3篇
- 个人装修合同简易版本
- 车位租给别人安装充电桩协议
- GB/T 44127-2024行政事业单位公物仓建设与运行指南
- 2025届云南省昆明盘龙区联考九年级英语第一学期期末教学质量检测试题含解析
- 物流运输管理实务(第2版)高职物流管理专业全套教学课件
- 金融服务居间合同协议
- 招标代理机构选取质量保障方案
- jgj94-94建筑桩基技术规范
- 欧美电影文化智慧树知到期末考试答案2024年
- DL T 5745-2016 电力建设工程工程量清单计价规范
- 眼科医院绩效考核方案
- 预缴物业费感恩回馈活动方案
评论
0/150
提交评论