2025届山东省邹城市第一中学高考全国统考预测密卷数学试卷含解析_第1页
2025届山东省邹城市第一中学高考全国统考预测密卷数学试卷含解析_第2页
2025届山东省邹城市第一中学高考全国统考预测密卷数学试卷含解析_第3页
2025届山东省邹城市第一中学高考全国统考预测密卷数学试卷含解析_第4页
2025届山东省邹城市第一中学高考全国统考预测密卷数学试卷含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届山东省邹城市第一中学高考全国统考预测密卷数学试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设复数满足,则()A. B. C. D.2.设是等差数列,且公差不为零,其前项和为.则“,”是“为递增数列”的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件3.已知复数和复数,则为A. B. C. D.4.已知为圆:上任意一点,,若线段的垂直平分线交直线于点,则点的轨迹方程为()A. B.C.() D.()5.《九章算术》勾股章有一“引葭赴岸”问题“今有饼池径丈,葭生其中,出水两尺,引葭赴岸,适与岸齐,问水深,葭各几何?”,其意思是:有一个直径为一丈的圆柱形水池,池中心生有一颗类似芦苇的植物,露出水面两尺,若把它引向岸边,正好与岸边齐,问水有多深,该植物有多高?其中一丈等于十尺,如图若从该葭上随机取一点,则该点取自水下的概率为()A. B. C. D.6.函数的图象大致是()A. B.C. D.7.已知函数,给出下列四个结论:①函数的值域是;②函数为奇函数;③函数在区间单调递减;④若对任意,都有成立,则的最小值为;其中正确结论的个数是()A. B. C. D.8.圆心为且和轴相切的圆的方程是()A. B.C. D.9.如图是甲、乙两位同学在六次数学小测试(满分100分)中得分情况的茎叶图,则下列说法错误的是()A.甲得分的平均数比乙大 B.甲得分的极差比乙大C.甲得分的方差比乙小 D.甲得分的中位数和乙相等10.设等差数列的前n项和为,若,则()A. B. C.7 D.211.下列函数中,既是奇函数,又是上的单调函数的是()A. B.C. D.12.在中,,,,若,则实数()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知为等比数列,是它的前项和.若,且与的等差中项为,则__________.14.若x,y均为正数,且,则的最小值为________.15.已知四棱锥的底面ABCD是边长为2的正方形,且.若四棱锥P-ABCD的五个顶点在以4为半径的同一球面上,当PA最长时,则______________;四棱锥P-ABCD的体积为______________.16.等腰直角三角形内有一点P,,,,,则面积为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在平面直角坐标系xOy中,曲线l的参数方程为(为参数),以原点O为极点,x轴非负半轴为极轴建立极坐标系,曲线C的极坐标方程为4sin.(1)求曲线C的普通方程;(2)求曲线l和曲线C的公共点的极坐标.18.(12分)已知函数(1)若恒成立,求实数的取值范围;(2)若方程有两个不同实根,,证明:.19.(12分)如图,在矩形中,,,点是边上一点,且,点是的中点,将沿着折起,使点运动到点处,且满足.(1)证明:平面;(2)求二面角的余弦值.20.(12分)某精密仪器生产车间每天生产个零件,质检员小张每天都会随机地从中抽取50个零件进行检查是否合格,若较多零件不合格,则需对其余所有零件进行检查.根据多年的生产数据和经验,这些零件的长度服从正态分布(单位:微米),且相互独立.若零件的长度满足,则认为该零件是合格的,否则该零件不合格.(1)假设某一天小张抽查出不合格的零件数为,求及的数学期望;(2)小张某天恰好从50个零件中检查出2个不合格的零件,若以此频率作为当天生产零件的不合格率.已知检查一个零件的成本为10元,而每个不合格零件流入市场带来的损失为260元.假设充分大,为了使损失尽量小,小张是否需要检查其余所有零件,试说明理由.附:若随机变量服从正态分布,则.21.(12分)已知,均为正数,且.证明:(1);(2).22.(10分)已知函数与的图象关于直线对称.(为自然对数的底数)(1)若的图象在点处的切线经过点,求的值;(2)若不等式恒成立,求正整数的最小值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】

根据复数运算,即可容易求得结果.【详解】.故选:D.【点睛】本题考查复数的四则运算,属基础题.2、A【解析】

根据等差数列的前项和公式以及充分条件和必要条件的定义进行判断即可.【详解】是等差数列,且公差不为零,其前项和为,充分性:,则对任意的恒成立,则,,若,则数列为单调递减数列,则必存在,使得当时,,则,不合乎题意;若,由且数列为单调递增数列,则对任意的,,合乎题意.所以,“,”“为递增数列”;必要性:设,当时,,此时,,但数列是递增数列.所以,“,”“为递增数列”.因此,“,”是“为递增数列”的充分而不必要条件.故选:A.【点睛】本题主要考查充分条件和必要条件的判断,结合等差数列的前项和公式是解决本题的关键,属于中等题.3、C【解析】

利用复数的三角形式的乘法运算法则即可得出.【详解】z1z2=(cos23°+isin23°)•(cos37°+isin37°)=cos60°+isin60°=.故答案为C.【点睛】熟练掌握复数的三角形式的乘法运算法则是解题的关键,复数问题高考必考,常见考点有:点坐标和复数的对应关系,点的象限和复数的对应关系,复数的加减乘除运算,复数的模长的计算.4、B【解析】

如图所示:连接,根据垂直平分线知,,故轨迹为双曲线,计算得到答案.【详解】如图所示:连接,根据垂直平分线知,故,故轨迹为双曲线,,,,故,故轨迹方程为.故选:.【点睛】本题考查了轨迹方程,确定轨迹方程为双曲线是解题的关键.5、C【解析】

由题意知:,,设,则,在中,列勾股方程可解得,然后由得出答案.【详解】解:由题意知:,,设,则在中,列勾股方程得:,解得所以从该葭上随机取一点,则该点取自水下的概率为故选C.【点睛】本题考查了几何概型中的长度型,属于基础题.6、A【解析】

根据复合函数的单调性,同增异减以及采用排除法,可得结果.【详解】当时,,由在递增,所以在递增又是增函数,所以在递增,故排除B、C当时,若,则所以在递减,而是增函数所以在递减,所以A正确,D错误故选:A【点睛】本题考查具体函数的大致图象的判断,关键在于对复合函数单调性的理解,记住常用的结论:增+增=增,增-减=增,减+减=减,复合函数单调性同增异减,属中档题.7、C【解析】

化的解析式为可判断①,求出的解析式可判断②,由得,结合正弦函数得图象即可判断③,由得可判断④.【详解】由题意,,所以,故①正确;为偶函数,故②错误;当时,,单调递减,故③正确;若对任意,都有成立,则为最小值点,为最大值点,则的最小值为,故④正确.故选:C.【点睛】本题考查三角函数的综合运用,涉及到函数的值域、函数单调性、函数奇偶性及函数最值等内容,是一道较为综合的问题.8、A【解析】

求出所求圆的半径,可得出所求圆的标准方程.【详解】圆心为且和轴相切的圆的半径为,因此,所求圆的方程为.故选:A.【点睛】本题考查圆的方程的求解,一般求出圆的圆心和半径,考查计算能力,属于基础题.9、B【解析】

由平均数、方差公式和极差、中位数概念,可得所求结论.【详解】对于甲,;对于乙,,故正确;甲的极差为,乙的极差为,故错误;对于甲,方差.5,对于乙,方差,故正确;甲得分的中位数为,乙得分的中位数为,故正确.故选:.【点睛】本题考查茎叶图的应用,考查平均数和方差等概念,培养计算能力,意在考查学生对这些知识的理解掌握水平,属于基础题.10、B【解析】

根据等差数列的性质并结合已知可求出,再利用等差数列性质可得,即可求出结果.【详解】因为,所以,所以,所以,故选:B【点睛】本题主要考查等差数列的性质及前项和公式,属于基础题.11、C【解析】

对选项逐个验证即得答案.【详解】对于,,是偶函数,故选项错误;对于,,定义域为,在上不是单调函数,故选项错误;对于,当时,;当时,;又时,.综上,对,都有,是奇函数.又时,是开口向上的抛物线,对称轴,在上单调递增,是奇函数,在上是单调递增函数,故选项正确;对于,在上单调递增,在上单调递增,但,在上不是单调函数,故选项错误.故选:.【点睛】本题考查函数的基本性质,属于基础题.12、D【解析】

将、用、表示,再代入中计算即可.【详解】由,知为的重心,所以,又,所以,,所以,.故选:D【点睛】本题考查平面向量基本定理的应用,涉及到向量的线性运算,是一道中档题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】

设等比数列的公比为,根据题意求出和的值,进而可求得和的值,利用等比数列求和公式可求得的值.【详解】由等比数列的性质可得,,由于与的等差中项为,则,则,,,,,因此,.故答案为:.【点睛】本题考查等比数列求和,解答的关键就是等比数列的公比,考查计算能力,属于基础题.14、4【解析】

由基本不等式可得,则,即可解得.【详解】方法一:,当且仅当时取等.方法二:因为,所以,所以,当且仅当时取等.故答案为:.【点睛】本题考查基本不等式在求最小值中的应用,考查学生对基本不等式的灵活使用,难度较易.15、90°【解析】

易得平面PAD,P点在与BA垂直的圆面内运动,显然,PA是圆的直径时,PA最长;将四棱锥补形为长方体,易得为球的直径即可得到PD,从而求得四棱锥的体积.【详解】如图,由及,得平面PAD,即P点在与BA垂直的圆面内运动,易知,当P、、A三点共线时,PA达到最长,此时,PA是圆的直径,则;又,所以平面ABCD,此时可将四棱锥补形为长方体,其体对角线为,底面边长为2的正方形,易求出,高,故四棱锥体积.故答案为:(1)90°;(2).【点睛】本题四棱锥外接球有关的问题,考查学生空间想象与逻辑推理能力,是一道有难度的压轴填空题.16、【解析】

利用余弦定理计算,然后根据平方关系以及三角形面积公式,可得结果.【详解】设由题可知:由,,,所以化简可得:则或,即或由,所以所以故答案为:【点睛】本题主要考查余弦定理解三角形,仔细观察,细心计算,属基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)(2,).【解析】

(1)利用极坐标和直角坐标的转化公式求解.(2)先把两个方程均化为普通方程,求解公共点的直角坐标,然后化为极坐标即可.【详解】(1)∵曲线C的极坐标方程为,∴,则,即.(2),∴,联立可得,(舍)或,公共点(,3),化为极坐标(2,).【点睛】本题主要考查极坐标和直角坐标的转化及交点的求解,熟记极坐标和直角坐标的转化公式是求解的关键,交点问题一般是统一一种坐标形式求解后再进行转化,侧重考查数学运算的核心素养.18、(1)(2)详见解析【解析】

(1)将原不等式转化为,构造函数,求得的最大值即可;

(2)首先通过求导判断的单调区间,考查两根的取值范围,再构造函数,将问题转化为证明,探究在区间内的最大值即可得证.【详解】解:(1)由,即,即,令,则只需,,令,得,在上单调递增,在上单调递减,,的取值范围是;(2)证明:不妨设,当时,单调递增,当时,单调递减,,当时,,,要证,即证,由在上单调递增,只需证明,由,只需证明,令,,只需证明,易知,由,故,,从而在上单调递增,由,故当时,,故,证毕.【点睛】本题考查利用导数研究函数单调性,最值等,关键是要对问题进行转化,比如把恒成立问题转化为最值问题,把根的个数问题转化为图像的交点个数,进而转化为证明不等式的问题,属难题.19、(1)见解析;(2)【解析】

(1)取的中点,连接,,由,进而,由,得.进而平面,进而结论可得证(2)(方法一)过点作的平行线交于点,以点为坐标原点,所在直线分别为轴、轴、轴建立如图所示的空间直角坐标系,求得平面平面的法向量,由二面角公式求解即可(方法二)取的中点,上的点,使,连接,得,,得二面角的平面角为,再求解即可【详解】(1)证明:取的中点,连接,,由已知得,所以,又点是的中点,所以.因为,点是线段的中点,所以.又因为,所以,从而平面,所以,又,不平行,所以平面.(2)(方法一)由(1)知,过点作的平行线交于点,以点为坐标原点,所在直线分别为轴、轴、轴建立如图所示的空间直角坐标系,则点,,,,所以,,.设平面的法向量为,由,得,令,得.同理,设平面的法向量为,由,得,令,得.所以二面角的余弦值为.(方法二)取的中点,上的点,使,连接,易知,.由(1)得,所以平面,所以,又,所以平面,所以二面角的平面角为.又计算得,,,所以.【点睛】本题考查线面垂直的判定,考查空间向量求二面角,考查空间想象及计算能力,是中档题20、(1)见解析(2)需要,见解析【解析】

(1)由零件的长度服从正态分布且相互独立,零件的长度满足即为合格,则每一个零件的长度合格的概率为,满足二项分布,利用补集的思想求得,再根据公式求得;(2)由题可得不合格率为,检查的成本为,求出不检查时损失的期望,与成本作差,再与0比较大小即可判断.【详解】(1),由于满足二项分布,故.(2)由题意可知不合格率为,若不检查,损失的期望为;若检查,成本

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论