江苏省盐城市东台市创新学校2025届高考数学四模试卷含解析_第1页
江苏省盐城市东台市创新学校2025届高考数学四模试卷含解析_第2页
江苏省盐城市东台市创新学校2025届高考数学四模试卷含解析_第3页
江苏省盐城市东台市创新学校2025届高考数学四模试卷含解析_第4页
江苏省盐城市东台市创新学校2025届高考数学四模试卷含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江苏省盐城市东台市创新学校2025届高考数学四模试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知,,那么是的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件2.已知复数满足:,则的共轭复数为()A. B. C. D.3.已知集合,,若AB,则实数的取值范围是()A. B. C. D.4.已知直线:与椭圆交于、两点,与圆:交于、两点.若存在,使得,则椭圆的离心率的取值范围为()A. B. C. D.5.设m,n为直线,、为平面,则的一个充分条件可以是()A.,, B.,C., D.,6.函数在上单调递减的充要条件是()A. B. C. D.7.已知不等式组表示的平面区域的面积为9,若点,则的最大值为()A.3 B.6 C.9 D.128.已知复数,若,则的值为()A.1 B. C. D.9.如图,正方体中,,,,分别为棱、、、的中点,则下列各直线中,不与平面平行的是()A.直线 B.直线 C.直线 D.直线10.将函数f(x)=sin3x-cos3x+1的图象向左平移个单位长度,得到函数g(x)的图象,给出下列关于g(x)的结论:①它的图象关于直线x=对称;②它的最小正周期为;③它的图象关于点(,1)对称;④它在[]上单调递增.其中所有正确结论的编号是()A.①② B.②③ C.①②④ D.②③④11.已知向量,则()A.∥ B.⊥ C.∥() D.⊥()12.已知集合,,则等于()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知函数,则关于的不等式的解集为_______.14.在回归分析的问题中,我们可以通过对数变换把非线性回归方程,()转化为线性回归方程,即两边取对数,令,得到.受其启发,可求得函数()的值域是_________.15.设函数,若存在实数m,使得关于x的方程有4个不相等的实根,且这4个根的平方和存在最小值,则实数a的取值范围是______.16.已知,则________.(填“>”或“=”或“<”).三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆:的两个焦点是,,在椭圆上,且,为坐标原点,直线与直线平行,且与椭圆交于,两点.连接、与轴交于点,.(1)求椭圆的标准方程;(2)求证:为定值.18.(12分)如图,四棱锥,侧面是边长为2的正三角形,且与底面垂直,底面是的菱形,为棱上的动点,且.(I)求证:为直角三角形;(II)试确定的值,使得二面角的平面角余弦值为.19.(12分)某中学的甲、乙、丙三名同学参加高校自主招生考试,每位同学彼此独立的从五所高校中任选2所.(1)求甲、乙、丙三名同学都选高校的概率;(2)若已知甲同学特别喜欢高校,他必选校,另在四校中再随机选1所;而同学乙和丙对五所高校没有偏爱,因此他们每人在五所高校中随机选2所.(i)求甲同学选高校且乙、丙都未选高校的概率;(ii)记为甲、乙、丙三名同学中选高校的人数,求随机变量的分布列及数学期望.20.(12分)已知数列,其前项和为,若对于任意,,且,都有.(1)求证:数列是等差数列(2)若数列满足,且等差数列的公差为,存在正整数,使得,求的最小值.21.(12分)如图,在四棱锥中,底面是菱形,∠,是边长为2的正三角形,,为线段的中点.(1)求证:平面平面;(2)若为线段上一点,当二面角的余弦值为时,求三棱锥的体积.22.(10分)在平面直角坐标系中,点是直线上的动点,为定点,点为的中点,动点满足,且,设点的轨迹为曲线.(1)求曲线的方程;(2)过点的直线交曲线于,两点,为曲线上异于,的任意一点,直线,分别交直线于,两点.问是否为定值?若是,求的值;若不是,请说明理由.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】

由,可得,解出即可判断出结论.【详解】解:因为,且.,解得.是的必要不充分条件.故选:.【点睛】本题考查了向量数量积运算性质、三角函数求值、简易逻辑的判定方法,考查了推理能力与计算能力,属于基础题.2、B【解析】

转化,为,利用复数的除法化简,即得解【详解】复数满足:所以故选:B【点睛】本题考查了复数的除法和复数的基本概念,考查了学生概念理解,数学运算的能力,属于基础题.3、D【解析】

先化简,再根据,且AB求解.【详解】因为,又因为,且AB,所以.故选:D【点睛】本题主要考查集合的基本运算,还考查了运算求解的能力,属于基础题.4、A【解析】

由题意可知直线过定点即为圆心,由此得到坐标的关系,再根据点差法得到直线的斜率与坐标的关系,由此化简并求解出离心率的取值范围.【详解】设,且线过定点即为的圆心,因为,所以,又因为,所以,所以,所以,所以,所以,所以,所以.故选:A.【点睛】本题考查椭圆与圆的综合应用,着重考查了椭圆离心率求解以及点差法的运用,难度一般.通过运用点差法达到“设而不求”的目的,大大简化运算.5、B【解析】

根据线面垂直的判断方法对选项逐一分析,由此确定正确选项.【详解】对于A选项,当,,时,由于不在平面内,故无法得出.对于B选项,由于,,所以.故B选项正确.对于C选项,当,时,可能含于平面,故无法得出.对于D选项,当,时,无法得出.综上所述,的一个充分条件是“,”故选:B【点睛】本小题主要考查线面垂直的判断,考查充分必要条件的理解,属于基础题.6、C【解析】

先求导函数,函数在上单调递减则恒成立,对导函数不等式换元成二次函数,结合二次函数的性质和图象,列不等式组求解可得.【详解】依题意,,令,则,故在上恒成立;结合图象可知,,解得故.故选:C.【点睛】本题考查求三角函数单调区间.求三角函数单调区间的两种方法:(1)代换法:就是将比较复杂的三角函数含自变量的代数式整体当作一个角(或),利用基本三角函数的单调性列不等式求解;(2)图象法:画出三角函数的正、余弦曲线,结合图象求它的单调区间.7、C【解析】

分析:先画出满足约束条件对应的平面区域,利用平面区域的面积为9求出,然后分析平面区域多边形的各个顶点,即求出边界线的交点坐标,代入目标函数求得最大值.详解:作出不等式组对应的平面区域如图所示:则,所以平面区域的面积,解得,此时,由图可得当过点时,取得最大值9,故选C.点睛:该题考查的是有关线性规划的问题,在求解的过程中,首先需要正确画出约束条件对应的可行域,之后根据目标函数的形式,判断z的几何意义,之后画出一条直线,上下平移,判断哪个点是最优解,从而联立方程组,求得最优解的坐标,代入求值,要明确目标函数的形式大体上有三种:斜率型、截距型、距离型;根据不同的形式,应用相应的方法求解.8、D【解析】由复数模的定义可得:,求解关于实数的方程可得:.本题选择D选项.9、C【解析】

充分利用正方体的几何特征,利用线面平行的判定定理,根据判断A的正误.根据,判断B的正误.根据与相交,判断C的正误.根据,判断D的正误.【详解】在正方体中,因为,所以平面,故A正确.因为,所以,所以平面故B正确.因为,所以平面,故D正确.因为与相交,所以与平面相交,故C错误.故选:C【点睛】本题主要考查正方体的几何特征,线面平行的判定定理,还考查了推理论证的能力,属中档题.10、B【解析】

根据函数图象的平移变换公式求出函数的解析式,再利用正弦函数的对称性、单调区间等相关性质求解即可.【详解】因为f(x)=sin3x-cos3x+1=2sin(3x-)+1,由图象的平移变换公式知,函数g(x)=2sin[3(x+)-]+1=2sin(3x+)+1,其最小正周期为,故②正确;令3x+=kπ+,得x=+(k∈Z),所以x=不是对称轴,故①错误;令3x+=kπ,得x=-(k∈Z),取k=2,得x=,故函数g(x)的图象关于点(,1)对称,故③正确;令2kπ-≤3x+≤2kπ+,k∈Z,得-≤x≤+,取k=2,得≤x≤,取k=3,得≤x≤,故④错误;故选:B【点睛】本题考查图象的平移变换和正弦函数的对称性、单调性和最小正周期等性质;考查运算求解能力和整体代换思想;熟练掌握正弦函数的对称性、单调性和最小正周期等相关性质是求解本题的关键;属于中档题、常考题型11、D【解析】

由题意利用两个向量坐标形式的运算法则,两个向量平行、垂直的性质,得出结论.【详解】∵向量(1,﹣2),(3,﹣1),∴和的坐标对应不成比例,故、不平行,故排除A;显然,•3+2≠0,故、不垂直,故排除B;∴(﹣2,﹣1),显然,和的坐标对应不成比例,故和不平行,故排除C;∴•()=﹣2+2=0,故⊥(),故D正确,故选:D.【点睛】本题主要考查两个向量坐标形式的运算,两个向量平行、垂直的性质,属于基础题.12、B【解析】

解不等式确定集合,然后由补集、并集定义求解.【详解】由题意或,∴,.故选:B.【点睛】本题考查集合的综合运算,以及一元二次不等式的解法,属于基础题型.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】

判断的奇偶性和单调性,原不等式转化为,运用单调性,可得到所求解集.【详解】令,易知函数为奇函数,在R上单调递增,,即,∴∴,即x>故答案为:【点睛】本题考查函数的奇偶性和单调性的运用:解不等式,考查转化思想和运算能力,属于中档题.14、【解析】

转化()为,即得解.【详解】由题意:().故答案为:【点睛】本题考查类比法求函数的值域,考查了学生逻辑推理,转化划归,数学运算的能力,属于中档题.15、【解析】

先确定关于x的方程当a为何值时有4个不相等的实根,再将这四个根的平方和表示出来,利用函数思想来判断当a为何值时这4个根的平方和存在最小值即可.【详解】由题意,当时,,此时,此时函数在单调递减,在单调递增,方程最多2个不相等的实根,舍;当时,函数图象如下所示:从左到右方程,有4个不相等的实根,依次为,,,,即,由图可知,故,且,,从而,令,显然,,要使该式在时有最小值,则对称轴,解得.综上所述,实数a的取值范围是.【点睛】本题考查了函数和方程的知识,但需要一定的逻辑思维能力,属于较难题.16、【解析】

注意到,故只需比较与1的大小即可.【详解】由已知,,故有.又由,故有.故答案为:.【点睛】本题考查对数式比较大小,涉及到换底公式的应用,考查学生的数学运算能力,是一道中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)证明见解析【解析】

(1)根据椭圆的定义可得,将代入椭圆方程,即可求得的值,求得椭圆方程;(2)设直线的方程,代入椭圆方程,求得直线和的方程,求得和的横坐标,表示出,根据韦达定理即可求证为定值.【详解】(1)因为,由椭圆的定义得,,点在椭圆上,代入椭圆方程,解得,所以的方程为;(2)证明:设,,直线的斜率为,设直线的方程为,联立方程组,消去,整理得,所以,,直线的直线方程为,令,则,同理,所以:,代入整理得,所以为定值.【点睛】本小题主要考查椭圆标准方程的求法,考查直线和椭圆的位置关系,考查椭圆中的定值问题,属于中档题.18、(1)见解析;(II).【解析】

试题分析:(1)取中点,连结,以为原点,为轴,为轴,为轴,建立空间直角坐标系,利用向量法能证明为直角三角形;(2)设,由,得,求出平面的法向量和平面的法向量,,根据空间向量夹角余弦公式能求出结果.试题解析:(I)取中点,连结,依题意可知均为正三角形,所以,又平面平面,所以平面,又平面,所以,因为,所以,即,从而为直角三角形.(II)法一:由(I)可知,又平面平面,平面平面,平面,所以平面.以为原点,建立空间直角坐标系如图所示,则,由可得点的坐标所以,设平面的法向量为,则,即解得,令,得,显然平面的一个法向量为,依题意,解得或(舍去),所以,当时,二面角的余弦值为.法二:由(I)可知平面,所以,所以为二面角的平面角,即,在中,,所以,由正弦定理可得,即解得,又,所以,所以,当时,二面角的余弦值为.19、(1)(2)(i)(ii)分布列见解析,【解析】

(1)先计算甲、乙、丙同学分别选择D高校的概率,利用事件的独立性即得解;(2)(i)分别计算每个事件的概率,再利用事件的独立性即得解;(ii),利用事件的独立性,分别计算对应的概率,列出分布列,计算数学期望即得解.【详解】(1)甲从五所高校中任选2所,共有共10种情况,甲、乙、丙同学都选高校,共有四种情况,甲同学选高校的概率为,因此乙、丙两同学选高校的概率为,因为每位同学彼此独立,所以甲、乙、丙三名同学都选高校的概率为.(2)(i)甲同学必选校且选高校的概率为,乙未选高校的概率为,丙未选高校的概率为,因为每位同学彼此独立,所以甲同学选高校且乙、丙都未选高校的概率为.(ii),因此,.即的分布列为0123因此数学期望为.【点睛】本题考查了事件独立性的应用和随机变量的分布列和期望,考查了学生综合分析,概念理解,实际应用,数学运算的能力,属于中档题.20、(1)证明见解析;(2).【解析】

(1)用数学归纳法证明即可;(2)根据条件可得,然后将用,,表示出来,根据是一个整数,可得结果.【详解】解:(1)令,,则即∴,∴成等差数列,下面用数学归纳法证明数列是等差数列,假设成等差数列,其中,公差为,令,,∴,∴,即,∴成等差数列,∴数列是等差数列;(2),,若存在正整数,使得是整数,则,设,,∴是一个整数,∴,从而又当时,有,综上,的最小值为.【点睛】本题主要考查由递推关系得通项公式和等差数列的性质,关键是利用数学归纳法证明数列是等差数列,属于难题.21、(1)见解析;(2).【解析】

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论