松原市重点中学2025届高考仿真模拟数学试卷含解析_第1页
松原市重点中学2025届高考仿真模拟数学试卷含解析_第2页
松原市重点中学2025届高考仿真模拟数学试卷含解析_第3页
松原市重点中学2025届高考仿真模拟数学试卷含解析_第4页
松原市重点中学2025届高考仿真模拟数学试卷含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

松原市重点中学2025届高考仿真模拟数学试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.命题“”的否定为()A. B.C. D.2.已知函数,其中,,其图象关于直线对称,对满足的,,有,将函数的图象向左平移个单位长度得到函数的图象,则函数的单调递减区间是()A. B.C. D.3.刘徽(约公元225年-295年),魏晋期间伟大的数学家,中国古典数学理论的奠基人之一他在割圆术中提出的,“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣”,这可视为中国古代极限观念的佳作,割圆术的核心思想是将一个圆的内接正n边形等分成n个等腰三角形(如图所示),当n变得很大时,这n个等腰三角形的面积之和近似等于圆的面积,运用割圆术的思想,得到的近似值为()A. B. C. D.4.一袋中装有个红球和个黑球(除颜色外无区别),任取球,记其中黑球数为,则为()A. B. C. D.5.已知平面和直线a,b,则下列命题正确的是()A.若∥,b∥,则∥ B.若,,则∥C.若∥,,则 D.若,b∥,则6.已知函数,存在实数,使得,则的最大值为()A. B. C. D.7.网络是一种先进的高频传输技术,我国的技术发展迅速,已位居世界前列.华为公司2019年8月初推出了一款手机,现调查得到该款手机上市时间和市场占有率(单位:%)的几组相关对应数据.如图所示的折线图中,横轴1代表2019年8月,2代表2019年9月……,5代表2019年12月,根据数据得出关于的线性回归方程为.若用此方程分析并预测该款手机市场占有率的变化趋势,则最早何时该款手机市场占有率能超过0.5%(精确到月)()A.2020年6月 B.2020年7月 C.2020年8月 D.2020年9月8.某人造地球卫星的运行轨道是以地心为一个焦点的椭圆,其轨道的离心率为,设地球半径为,该卫星近地点离地面的距离为,则该卫星远地点离地面的距离为()A. B.C. D.9.已知函数(,,),将函数的图象向左平移个单位长度,得到函数的部分图象如图所示,则是的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件10.直线与圆的位置关系是()A.相交 B.相切 C.相离 D.相交或相切11.已知函数在上都存在导函数,对于任意的实数都有,当时,,若,则实数的取值范围是()A. B. C. D.12.已知复数(为虚数单位),则下列说法正确的是()A.的虚部为 B.复数在复平面内对应的点位于第三象限C.的共轭复数 D.二、填空题:本题共4小题,每小题5分,共20分。13.已知函数为偶函数,则_____.14.已知椭圆的下顶点为,若直线与椭圆交于不同的两点、,则当_____时,外心的横坐标最大.15.对于任意的正数,不等式恒成立,则的最大值为_____.16.已知,,,则的最小值是__.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数与的图象关于直线对称.(为自然对数的底数)(1)若的图象在点处的切线经过点,求的值;(2)若不等式恒成立,求正整数的最小值.18.(12分)已知函数(,),且对任意,都有.(Ⅰ)用含的表达式表示;(Ⅱ)若存在两个极值点,,且,求出的取值范围,并证明;(Ⅲ)在(Ⅱ)的条件下,判断零点的个数,并说明理由.19.(12分)在考察疫情防控工作中,某区卫生防控中心提出了“要坚持开展爱国卫生运动,从人居环境改善、饮食习惯、社会心理健康、公共卫生设施等多个方面开展,特别是要坚决杜绝食用野生动物的陋习,提倡文明健康、绿色环保的生活方式”的要求.某小组通过问卷调查,随机收集了该区居民六类日常生活习惯的有关数据.六类习惯是:(1)卫生习惯状况类;(2)垃圾处理状况类;(3)体育锻炼状况类;(4)心理健康状况类;(5)膳食合理状况类;(6)作息规律状况类.经过数据整理,得到下表:卫生习惯状况类垃圾处理状况类体育锻炼状况类心理健康状况类膳食合理状况类作息规律状况类有效答卷份数380550330410400430习惯良好频率0.60.90.80.70.650.6假设每份调查问卷只调查上述六类状况之一,各类调查是否达到良好标准相互独立.(1)从小组收集的有效答卷中随机选取1份,求这份试卷的调查结果是膳食合理状况类中习惯良好者的概率;(2)从该区任选一位居民,试估计他在“卫生习惯状况类、体育锻炼状况类、膳食合理状况类”三类习惯方面,至少具备两类良好习惯的概率;(3)利用上述六类习惯调查的排序,用“”表示任选一位第k类受访者是习惯良好者,“”表示任选一位第k类受访者不是习惯良好者().写出方差,,,,,的大小关系.20.(12分)的内角的对边分别为,已知.(1)求的大小;(2)若,求面积的最大值.21.(12分)设函数(其中),且函数在处的切线与直线平行.(1)求的值;(2)若函数,求证:恒成立.22.(10分)已知函数.(1)若函数的图象与轴有且只有一个公共点,求实数的取值范围;(2)若对任意成立,求实数的取值范围.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】

套用命题的否定形式即可.【详解】命题“”的否定为“”,所以命题“”的否定为“”.故选:C【点睛】本题考查全称命题的否定,属于基础题.2、B【解析】

根据已知得到函数两个对称轴的距离也即是半周期,由此求得的值,结合其对称轴,求得的值,进而求得解析式.根据图像变换的知识求得的解析式,再利用三角函数求单调区间的方法,求得的单调递减区间.【详解】解:已知函数,其中,,其图像关于直线对称,对满足的,,有,∴.再根据其图像关于直线对称,可得,.∴,∴.将函数的图像向左平移个单位长度得到函数的图像.令,求得,则函数的单调递减区间是,,故选B.【点睛】本小题主要考查三角函数图像与性质求函数解析式,考查三角函数图像变换,考查三角函数单调区间的求法,属于中档题.3、A【解析】

设圆的半径为,每个等腰三角形的顶角为,则每个等腰三角形的面积为,由割圆术可得圆的面积为,整理可得,当时即可为所求.【详解】由割圆术可知当n变得很大时,这n个等腰三角形的面积之和近似等于圆的面积,设圆的半径为,每个等腰三角形的顶角为,所以每个等腰三角形的面积为,所以圆的面积为,即,所以当时,可得,故选:A【点睛】本题考查三角形面积公式的应用,考查阅读分析能力.4、A【解析】

由题意可知,随机变量的可能取值有、、、,计算出随机变量在不同取值下的概率,进而可求得随机变量的数学期望值.【详解】由题意可知,随机变量的可能取值有、、、,则,,,.因此,随机变量的数学期望为.故选:A.【点睛】本题考查随机变量数学期望的计算,考查计算能力,属于基础题.5、C【解析】

根据线面的位置关系,结合线面平行的判定定理、平行线的性质进行判断即可.【详解】A:当时,也可以满足∥,b∥,故本命题不正确;B:当时,也可以满足,,故本命题不正确;C:根据平行线的性质可知:当∥,,时,能得到,故本命题是正确的;D:当时,也可以满足,b∥,故本命题不正确.故选:C【点睛】本题考查了线面的位置关系,考查了平行线的性质,考查了推理论证能力.6、A【解析】

画出分段函数图像,可得,由于,构造函数,利用导数研究单调性,分析最值,即得解.【详解】由于,,由于,令,,在↗,↘故.故选:A【点睛】本题考查了导数在函数性质探究中的应用,考查了学生数形结合,转化划归,综合分析,数学运算的能力,属于较难题.7、C【解析】

根据图形,计算出,然后解不等式即可.【详解】解:,点在直线上,令因为横轴1代表2019年8月,所以横轴13代表2020年8月,故选:C【点睛】考查如何确定线性回归直线中的系数以及线性回归方程的实际应用,基础题.8、A【解析】

由题意画出图形,结合椭圆的定义,结合椭圆的离心率,求出椭圆的长半轴a,半焦距c,即可确定该卫星远地点离地面的距离.【详解】椭圆的离心率:,(c为半焦距;a为长半轴),设卫星近地点,远地点离地面距离分别为r,n,如图:则所以,,故选:A【点睛】本题主要考查了椭圆的离心率的求法,注意半焦距与长半轴的求法,是解题的关键,属于中档题.9、B【解析】

先根据图象求出函数的解析式,再由平移知识得到的解析式,然后分别找出和的等价条件,即可根据充分条件,必要条件的定义求出.【详解】设,根据图象可知,,再由,取,∴.将函数的图象向右平移个单位长度,得到函数的图象,∴.,,令,则,显然,∴是的必要不充分条件.故选:B.【点睛】本题主要考查利用图象求正(余)弦型函数的解析式,三角函数的图形变换,二倍角公式的应用,充分条件,必要条件的定义的应用,意在考查学生的数学运算能力和逻辑推理能力,属于中档题.10、D【解析】

由几何法求出圆心到直线的距离,再与半径作比较,由此可得出结论.【详解】解:由题意,圆的圆心为,半径,∵圆心到直线的距离为,,,故选:D.【点睛】本题主要考查直线与圆的位置关系,属于基础题.11、B【解析】

先构造函数,再利用函数奇偶性与单调性化简不等式,解得结果.【详解】令,则当时,,又,所以为偶函数,从而等价于,因此选B.【点睛】本题考查利用函数奇偶性与单调性求解不等式,考查综合分析求解能力,属中档题.12、D【解析】

利用的周期性先将复数化简为即可得到答案.【详解】因为,,,所以的周期为4,故,故的虚部为2,A错误;在复平面内对应的点为,在第二象限,B错误;的共轭复数为,C错误;,D正确.故选:D.【点睛】本题考查复数的四则运算,涉及到复数的虚部、共轭复数、复数的几何意义、复数的模等知识,是一道基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】

根据偶函数的定义列方程,化简求得的值.【详解】由于为偶函数,所以,即,即,即,即,即,即,即,所以.故答案为:【点睛】本小题主要考查根据函数的奇偶性求参数,考查运算求解能力,属于中档题.14、【解析】

由已知可得、的坐标,求得的垂直平分线方程,联立已知直线方程与椭圆方程,求得的垂直平分线方程,两垂直平分线方程联立求得外心的横坐标,再由导数求最值.【详解】如图,由已知条件可知,不妨设,则外心在的垂直平分线上,即在直线,也就是在直线上,联立,得或,的中点坐标为,则的垂直平分线方程为,把代入上式,得,令,则,由,得(舍)或.当时,,当时,.当时,函数取极大值,亦为最大值.故答案为:.【点睛】本题考查直线与椭圆位置关系的应用,训练了利用导数求最值,是中等题.15、【解析】

根据均为正数,等价于恒成立,令,转化为恒成立,利用基本不等式求解最值.【详解】由题均为正数,不等式恒成立,等价于恒成立,令则,当且仅当即时取得等号,故的最大值为.故答案为:【点睛】此题考查不等式恒成立求参数的取值范围,关键在于合理进行等价变形,此题可以构造二次函数求解,也可利用基本不等式求解.16、.【解析】

因为,展开后利用基本不等式,即可得到本题答案.【详解】由,得,所以,当且仅当,取等号.故答案为:【点睛】本题主要考查利用基本不等式求最值,考查学生的转化能力和运算求解能力.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)e;(2)2.【解析】

(1)根据反函数的性质,得出,再利用导数的几何意义,求出曲线在点处的切线为,构造函数,利用导数求出单调性,即可得出的值;(2)设,求导,求出的单调性,从而得出最大值为,结合恒成立的性质,得出正整数的最小值.【详解】(1)根据题意,与的图象关于直线对称,所以函数的图象与互为反函数,则,,设点,,又,当时,,曲线在点处的切线为,即,代入点,得,即,构造函数,当时,,当时,,且,当时,单调递增,而,故存在唯一的实数根.(2)由于不等式恒成立,可设,所以,令,得.所以当时,;当时,,因此函数在是增函数,在是减函数.故函数的最大值为.令,因为,,又因为在是减函数.所以当时,.所以正整数的最小值为2.【点睛】本题考查导数的几何意义和利用导数解决恒成立问题,涉及到单调性、构造函数法等,考查函数思想和计算能力.18、(1)(2)见解析(3)见解析【解析】试题分析:利用赋值法求出关系,求函数导数,要求函数有两个极值点,只需在内有两个实根,利用一元二次方程的根的分布求出的取值范围,再根据函数图象和极值的大小判断零点的个数.试题解析:(Ⅰ)根据题意:令,可得,所以,经验证,可得当时,对任意,都有,所以.(Ⅱ)由(Ⅰ)可知,且,所以,令,要使存在两个极值点,,则须有有两个不相等的正数根,所以或解得或无解,所以的取值范围,可得,由题意知,令,则.而当时,,即,所以在上单调递减,所以即时,.(Ⅲ)因为,.令得,.由(Ⅱ)知时,的对称轴,,,所以.又,可得,此时,在上单调递减,上单调递增,上单调递减,所以最多只有三个不同的零点.又因为,所以在上递增,即时,恒成立.根据(2)可知且,所以,即,所以,使得.由,得,又,,所以恰有三个不同的零点:,1,.综上所述,恰有三个不同的零点.【点睛】利用赋值法求出关系,利用函数导数,研究函数的单调性,要求函数有两个极值点,只需在内有两个实根,利用一元二次方程的根的分布求出的取值范围,利用函数的导数研究函数的单调性、极值,再根据函数图象和极值的大小判断零点的个数是近年高考压轴题的热点.19、(1)(2)(3)【解析】

(1)设“选取的试卷的调查结果是膳食合理状况类中习惯良好者“的事件为,根据古典概型求出即可;(2)设该区“卫生习惯状况良好者“,“体育锻炼状况良好者“、“膳食合理状况良好者”事件分别为,,,设事件为“该居民在“卫生习惯状况类、体育锻炼状况类、膳食合理状况类”三类习惯方面,至少具备两类良好习惯“,则(E),求出即可;(3)根据题意,写出即可.【详解】(1)设“选取的试卷的调查结果是膳食合理状况类中习惯良好者“的事件为,有效问卷共有(份,其中受访者中膳食合理习惯良好的人数是人,故(A);(2)设该区“卫生习惯状况良好者“,“体育锻炼状况良好者“、“膳食合理状况良好者”事件分别为,,,根据题意,可知(A),(B),(C),设事件为“该居民在“卫生习惯状况类、体育锻炼状况类、膳食合理状况类”三类习惯方面,至少具备两类良好习惯“则.所以该居民在“卫生习惯状况类、体育锻炼状况类、膳食合理状况类”三类习惯至少具备2个良好习惯的概率为0.766.(3).【点睛】本题考查了古典概型求概率,独立性事件,互斥性事件求概率等,考查运算能力和事件应用能力,中档题.20、(1);(2).【解析】

(1)利用正弦定理将边化角,结合诱导公式可化简边角关系式,求得,根据可求得结果;(2)利用余弦定理可得,利用基本不等式可求得,代入三角形面积公式可求得结果.【详解】(1)由正弦定理得:,又,即由得:(2)由余弦定理得:又(当且仅当时取等号)即三角形面积的最大值为:【点睛】本题考查解三角形的相关知识,涉及到正弦定理化简边

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论