版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
辽宁省辽源市鼎高级中学2025届高考压轴卷数学试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设、是两条不同的直线,、是两个不同的平面,则的一个充分条件是()A.且 B.且 C.且 D.且2.已知在平面直角坐标系中,圆:与圆:交于,两点,若,则实数的值为()A.1 B.2 C.-1 D.-23.已知斜率为k的直线l与抛物线交于A,B两点,线段AB的中点为,则斜率k的取值范围是()A. B. C. D.4.我国古代数学巨著《九章算术》中,有如下问题:“今有女子善织,日自倍,五日织五尺,问日织几何?”这个问题用今天的白话叙述为:有一位善于织布的女子,每天织的布都是前一天的2倍,已知她5天共织布5尺,问这位女子每天分别织布多少?根据上述问题的已知条件,若该女子共织布尺,则这位女子织布的天数是()A.2 B.3 C.4 D.15.已知等差数列中,,,则数列的前10项和()A.100 B.210 C.380 D.4006.《算数书》竹简于上世纪八十年代在湖北省江陵县张家山出土,这是我国现存最早的有系统的数学典籍.其中记载有求“囷盖”的术:“置如其周,令相承也.又以高乘之,三十六成一”.该术相当于给出了由圆锥的底面周长与高,计算其体积的近似公式.它实际上是将圆锥体积公式中的圆周率近似取为3.那么近似公式相当于将圆锥体积公式中的圆周率近似取为()A. B. C. D.7.已知函数,不等式对恒成立,则的取值范围为()A. B. C. D.8.已知,则下列关系正确的是()A. B. C. D.9.已知抛物线:的焦点为,过点的直线交抛物线于,两点,其中点在第一象限,若弦的长为,则()A.2或 B.3或 C.4或 D.5或10.已知不同直线、与不同平面、,且,,则下列说法中正确的是()A.若,则 B.若,则C.若,则 D.若,则11.设函数(,)是上的奇函数,若的图象关于直线对称,且在区间上是单调函数,则()A. B. C. D.12.函数f(x)=的图象大致为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知在△ABC中,(2sin32°,2cos32°),(cos77°,﹣cos13°),则⋅_____,△ABC的面积为_____.14.已知函数的图象在点处的切线方程是,则的值等于__________.15.设P为有公共焦点的椭圆与双曲线的一个交点,且,椭圆的离心率为,双曲线的离心率为,若,则______________.16.已知函数是定义在上的奇函数,则的值为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆的离心率为,且以原点O为圆心,椭圆C的长半轴长为半径的圆与直线相切.(1)求椭圆的标准方程;(2)已知动直线l过右焦点F,且与椭圆C交于A、B两点,已知Q点坐标为,求的值.18.(12分)已知为坐标原点,单位圆与角终边的交点为,过作平行于轴的直线,设与终边所在直线的交点为,.(1)求函数的最小正周期;(2)求函数在区间上的值域.19.(12分)设点,动圆经过点且和直线相切.记动圆的圆心的轨迹为曲线.(1)求曲线的方程;(2)过点的直线与曲线交于、两点,且直线与轴交于点,设,,求证:为定值.20.(12分)已知数列,其前项和为,若对于任意,,且,都有.(1)求证:数列是等差数列(2)若数列满足,且等差数列的公差为,存在正整数,使得,求的最小值.21.(12分)已知函数.(Ⅰ)已知是的一个极值点,求曲线在处的切线方程(Ⅱ)讨论关于的方程根的个数.22.(10分)在直角坐标系中,曲线的参数方程为(为参数).以为极点,轴的正半轴为极轴建立极坐标系,直线的极坐标方程为(),将曲线向左平移2个单位长度得到曲线.(1)求曲线的普通方程和极坐标方程;(2)设直线与曲线交于两点,求的取值范围.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】由且可得,故选B.2、D【解析】
由可得,O在AB的中垂线上,结合圆的性质可知O在两个圆心的连线上,从而可求.【详解】因为,所以O在AB的中垂线上,即O在两个圆心的连线上,,,三点共线,所以,得,故选D.【点睛】本题主要考查圆的性质应用,几何性质的转化是求解的捷径.3、C【解析】
设,,,,设直线的方程为:,与抛物线方程联立,由△得,利用韦达定理结合已知条件得,,代入上式即可求出的取值范围.【详解】设直线的方程为:,,,,,联立方程,消去得:,△,,且,,,线段的中点为,,,,,,,,把代入,得,,,故选:【点睛】本题主要考查了直线与抛物线的位置关系,考查了韦达定理的应用,属于中档题.4、B【解析】
将问题转化为等比数列问题,最终变为求解等比数列基本量的问题.【详解】根据实际问题可以转化为等比数列问题,在等比数列中,公比,前项和为,,,求的值.因为,解得,,解得.故选B.【点睛】本题考查等比数列的实际应用,难度较易.熟悉等比数列中基本量的计算,对于解决实际问题很有帮助.5、B【解析】
设公差为,由已知可得,进而求出的通项公式,即可求解.【详解】设公差为,,,,.故选:B.【点睛】本题考查等差数列的基本量计算以及前项和,属于基础题.6、C【解析】
将圆锥的体积用两种方式表达,即,解出即可.【详解】设圆锥底面圆的半径为r,则,又,故,所以,.故选:C.【点睛】本题利用古代数学问题考查圆锥体积计算的实际应用,考查学生的运算求解能力、创新能力.7、C【解析】
确定函数为奇函数,且单调递减,不等式转化为,利用双勾函数单调性求最值得到答案.【详解】是奇函数,,易知均为减函数,故且在上单调递减,不等式,即,结合函数的单调性可得,即,设,,故单调递减,故,当,即时取最大值,所以.故选:.【点睛】本题考查了根据函数单调性和奇偶性解不等式,参数分离求最值是解题的关键.8、A【解析】
首先判断和1的大小关系,再由换底公式和对数函数的单调性判断的大小即可.【详解】因为,,,所以,综上可得.故选:A【点睛】本题考查了换底公式和对数函数的单调性,考查了推理能力与计算能力,属于基础题.9、C【解析】
先根据弦长求出直线的斜率,再利用抛物线定义可求出.【详解】设直线的倾斜角为,则,所以,,即,所以直线的方程为.当直线的方程为,联立,解得和,所以;同理,当直线的方程为.,综上,或.选C.【点睛】本题主要考查直线和抛物线的位置关系,弦长问题一般是利用弦长公式来处理.出现了到焦点的距离时,一般考虑抛物线的定义.10、C【解析】
根据空间中平行关系、垂直关系的相关判定和性质可依次判断各个选项得到结果.【详解】对于,若,则可能为平行或异面直线,错误;对于,若,则可能为平行、相交或异面直线,错误;对于,若,且,由面面垂直的判定定理可知,正确;对于,若,只有当垂直于的交线时才有,错误.故选:.【点睛】本题考查空间中线面关系、面面关系相关命题的辨析,关键是熟练掌握空间中的平行关系与垂直关系的相关命题.11、D【解析】
根据函数为上的奇函数可得,由函数的对称轴及单调性即可确定的值,进而确定函数的解析式,即可求得的值.【详解】函数(,)是上的奇函数,则,所以.又的图象关于直线对称可得,,即,,由函数的单调区间知,,即,综上,则,.故选:D【点睛】本题考查了三角函数的图象与性质的综合应用,由对称轴、奇偶性及单调性确定参数,属于中档题.12、D【解析】
根据函数为非偶函数可排除两个选项,再根据特殊值可区分剩余两个选项.【详解】因为f(-x)=≠f(x)知f(x)的图象不关于y轴对称,排除选项B,C.又f(2)==-<0.排除A,故选D.【点睛】本题主要考查了函数图象的对称性及特值法区分函数图象,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
①根据向量数量积的坐标表示结合两角差的正弦公式的逆用即可得解;②结合①求出,根据面积公式即可得解.【详解】①2(sin32°•cos77°﹣cos32°•sin77°),②,,∴,∴.故答案为:.【点睛】此题考查平面向量与三角函数解三角形综合应用,涉及平面向量数量积的坐标表示,三角恒等变换,根据三角形面积公式求解三角形面积,综合性强.14、【解析】
利用导数的几何意义即可解决.【详解】由已知,,,故.故答案为:.【点睛】本题考查导数的几何意义,要注意在某点的切线与过某点的切线的区别,本题属于基础题.15、【解析】设根据椭圆的几何性质可得,根据双曲线的几何性质可得,,即故答案为16、【解析】
先利用辅助角公式将转化成,根据函数是定义在上的奇函数得出,从而得出函数解析式,最后求出即可.【详解】解:,又因为定义在上的奇函数,则,则,又因为,所以,,所以.故答案为:【点睛】本题考查三角函数的化简,三角函数的奇偶性和三角函数求值,考查了基本知识的应用能力和计算能力,是基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】
(1)根据椭圆的离心率为,得到,根据直线与圆的位置关系,得到原心到直线的距离等于半径,得到,从而求得,进而求得椭圆的方程;(2)分直线的斜率存在是否为0与不存在三种情况讨论,写出直线的方程,与椭圆方程联立,利用韦达定理,向量的数量积,结合已知条件求得结果.【详解】(1)由离心率为,可得,,且以原点O为圆心,椭圆C的长半轴长为半径的圆的方程为,因与直线相切,则有,即,,,故而椭圆方程为.(2)①当直线l的斜率不存在时,,,由于;②当直线l的斜率为0时,,,则;③当直线l的斜率不为0时,设直线l的方程为,,,由及,得,有,∴,,,,∴,综上所述:.【点睛】该题考查直线与圆锥曲线的综合问题,椭圆的标准方程,考查直线与椭圆的位置关系,求向量数量积,在解题的过程中,注意对直线方程的分类讨论,属于中档题目.18、(1);(2).【解析】
(1)根据题意,求得,,因而得出,利用降幂公式和二倍角的正弦公式化简函数,最后利用,求出的最小正周期;(2)由(1)得,再利用整体代入求出函数的值域.【详解】(1)因为,,所以,,所以函数的最小正周期为.(2)因为,所以,所以,故函数在区间上的值域为.【点睛】本题考查正弦型函数的周期和值域,运用到向量的坐标运算、降幂公式和二倍角的正弦公式,考查化简和计算能力.19、(1);(2)见解析.【解析】
(1)已知点轨迹是以为焦点,直线为准线的抛物线,由此可得曲线的方程;(2)设直线方程为,,则,设,由直线方程与抛物线方程联立消元应用韦达定理得,,由,,用横坐标表示出,然后计算,并代入,可得结论.【详解】(1)设动圆圆心,由抛物线定义知:点轨迹是以为焦点,直线为准线的抛物线,设其方程为,则,解得.∴曲线的方程为;(2)证明:设直线方程为,,则,设,由得,①,则,,②,由,,得,,整理得,,∴,代入②得:.【点睛】本题考查求曲线方程,考查抛物线的定义,考查直线与抛物线相交问题中的定值问题.解题方法是设而不求的思想方法,即设交点坐标,设直线方程,直线方程代入抛物线(或圆锥曲线)方程得一元二次方程,应用韦达定理得,,代入题中其他条件所求式子中化简变形.20、(1)证明见解析;(2).【解析】
(1)用数学归纳法证明即可;(2)根据条件可得,然后将用,,表示出来,根据是一个整数,可得结果.【详解】解:(1)令,,则即∴,∴成等差数列,下面用数学归纳法证明数列是等差数列,假设成等差数列,其中,公差为,令,,∴,∴,即,∴成等差数列,∴数列是等差数列;(2),,若存在正整数,使得是整数,则,设,,∴是一个整数,∴,从而又当时,有,综上,的最小值为.【点睛】本题主要考查由递推关系得通项公式和等差数列的性质,关键是利用数学归纳法证明数列是等差数列,属于难题.21、(Ⅰ);(Ⅱ)见解析【解析】
(Ⅰ)求函数的导数,利用x=2是f(x)的一个极值点,得f'(2)=0建立方程求出a的值,结合导数的几何意义进行求解即可;(Ⅱ)利用参数法分离法得到,构造函数求出函数的导数研究函数的单调性和最值,利用数形结合转化为图象交点个数进行求解即可.【详解】(Ⅰ)因为,则,因为是的一个极值点,所以,即,所以,因为,,则直线方程为,即;(Ⅱ)因为,所以,所以,设,则,所以在上是增函数,在上是减函数,故,所以,所以,设,则,所以在上是减函数,上是增函数,所以,所以当时,,函数在是减函数,当时,,函数在是增函数,因为时,,,,所以当时,方程无实数根,当时,方程有两个不相等实数根,当或时,方程有1个实根.【点睛】本题考查函数中由极值点求参,导数的几何意义,还考查了利用导数研究方程根的个数问题,属于难题.22、(1)的极坐标方程为,普通方程为;(2)【解析】
(1)根据三角函数恒等变换可得,,可得曲线的普通方程,再运用图像的平移得依题意得曲线的普通方程为,利用极坐标与平面直角坐标互化的公式可得方程;(2)法一:将代入曲线的极坐标
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 江西省吉安市遂川县2024年中考模拟数学试题附答案
- 部编小学语文-一年级下全册教案
- 科学育种技术提升作物光合作用效率
- 园林景观工程施工组织设计技术标
- 高一化学二专题化学科学与人类文明练习
- 2024届北京海淀外国语高三(最后冲刺)化学试卷含解析
- 2024届江苏盐城市时杨中学高考临考冲刺化学试卷含解析
- 2024高中地理第2章区域生态环境建设第1节第2课时荒漠化的人为原因和防治学案新人教版必修3
- 2024高中物理第三章相互作用5力的分解课后作业含解析新人教版必修1
- 2024高中语文第7单元韩非子蚜第1课郑人有且买履者练习含解析新人教版选修先秦诸子蚜
- 2025年度爱读书学长策划的读书讲座系列合同2篇
- 广东省深圳市宝安区2024-2025学年八年级英语上学期1月期末英语试卷(含答案)
- 《设备房管理标准》课件
- 《交通运输行业安全生产监督检查工作指南 第2部分:道路运输》
- 初二生物期末质量分析及整改措施
- 苏州工业园区ESG发展白皮书
- 《边缘计算单元与交通信号控制机的数据通信标准编制说明》
- 《安防摄像机智能化指标要求和评估方法》
- 驾驶证学法减分(学法免分)试题和答案(50题完整版)1650
- 高低压配电柜-福建宁德核电站投标书
- 干燥综合症护理课件
评论
0/150
提交评论