浙江省杭州市拱墅区文澜中学2024-2025学年上学期七年级期中数学试卷_第1页
浙江省杭州市拱墅区文澜中学2024-2025学年上学期七年级期中数学试卷_第2页
浙江省杭州市拱墅区文澜中学2024-2025学年上学期七年级期中数学试卷_第3页
浙江省杭州市拱墅区文澜中学2024-2025学年上学期七年级期中数学试卷_第4页
浙江省杭州市拱墅区文澜中学2024-2025学年上学期七年级期中数学试卷_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024-2025学年浙江省杭州市拱墅区文澜中学七年级(上)期中数学试卷一.选择题(本题共10个小题,每小题3分,共30分)1.(3分)﹣4的倒数是()A.4 B.﹣4 C. D.﹣2.(3分)我国倡导的“一带一路”建设将促进我国与世界一些国家的互利合作,根据规划“一带一路”地区覆盖总人口为4400000000人,这个数用科学记数法表示为()A.44×108 B.4.4×108 C.4.4×109 D.4.4×10103.(3分)下列式子中,符合代数式书写的是()A. B. C.xy÷3 D.x×y4.(3分)下列四个数:﹣3.14,﹣0.5,,中,属于无理数的是()A.﹣3.14 B.﹣0.5 C. D.5.(3分)下列运算中,正确的是()A. B.=3 C. D.6.(3分)下列各式的计算结果正确的是()A.3x+5y=5xy B.7y2﹣5y2=2 C.8a﹣3a=5a D.5ab2﹣2a2b=3ab27.(3分)估计﹣2的大致范围为()A.2<﹣2<3 B.3<﹣2<4 C.4<﹣2<5 D.5<﹣2<68.(3分)式子|x﹣7|﹣3的值可能是()A.﹣10 B.﹣7 C.﹣4 D.09.(3分)下列说法中:①立方根等于本身的是﹣1、0、1;②的算术平方根是4;③两个无理数的和一定是无理数;④实数与数轴上的点是一一对应的;⑤是负分数;⑥3.40万是精确到百位的近似数.其中正确的个数是()A.2个 B.3个 C.4个 D.5个10.(3分)若在正方形的四个顶点处依次标上“我”“爱”“数”“学”四个字,且将正方形放置在数轴上,其中“我”“爱”对应的数分别为﹣2和﹣1,如图,现将正方形绕着顶点按顺时针方向在数轴上向右无滑动地翻滚.例如,第一次翻滚后“数”所对应的数为0,则连续翻滚后数轴上数2024对应的字是()A.我 B.爱 C.数 D.学二.填空题(本题共10个小题,每小题4分,共40分)11.(4分)如果收入10元记作“+10”,那么支出5元记作.12.(4分)小华今年a岁,小明比他小2岁,则小明的年龄是岁.13.(4分)单项式的系数是,次数是.14.(4分)若代数式x﹣2y的值是﹣1,则代数式8﹣x+2y的值是.15.(4分)如果﹣2xay与3x4yb是同类项,则a﹣b为.16.(4分)已知a、b互为相反数,c、d互为倒数,则=.17.(4分)如图(1),在4×4的方格中,每个小正方形的边长为1.(1)求图(1)中正方形ABCD的面积.(2)如图(2),若点A在数轴上表示的数是﹣1,以A为圆心,AD为半径画圆弧与数轴的正半轴交于点E,则点E所表示的数是.18.(4分)已知|a|=5,b2=4,c3=﹣8,若abc>0,则a﹣3b﹣2c的值为.19.(4分)如图,爱动脑筋的琪琪同学设计了一种“幻圆”游戏,将﹣1,3,﹣5,7,﹣9,11,﹣13,15分别填入图中的圆圈内,使横、竖以及内外两圈上的4个数字之和都相等,他已经将7,11,﹣13,15这四个数填入了圆圈,则图中a+b的值为.20.(4分)如图,是一个数值转换器,其工作原理如图所示.(1)当输入的x值为8时,则输出的y值为;(2)若输出的y是且10≤|x|<100,则输入的x的值为.三.解答题(本题共6个小题,共50分)21.(6分)计算:(1)(﹣11)+(﹣7);(2);(3).22.(6分)把下列实数表示在数轴上,并比较它们的大小(用“<”连接).﹣3,0,|﹣2|,,(﹣1)2.<<<<23.(8分)(1)化简:m﹣n+5m﹣4n;(2)先化简,再求值:2x2+4y2+(2y2﹣3x2)﹣2(y2﹣2x2)其中x=﹣1,.24.(8分)某小型工厂生产酸枣面和黄小米,每日两种产品合计生产1500袋,两种产品的成本和售价如下表,设每天生产酸枣面x袋.成本(元/袋)售价(元/袋)酸枣面4046黄小米1315(1)每天生产黄小米袋,两种产品每天的生产成本共元.(结果用含x的式子表示)(2)用含x的式子表示每天获得的利润.(利润=售价﹣成本).(3)当x=600时,求每天的生产成本与每天获得的利润.25.(10分)观察下列等式:第1个等式:a1=;第2个等式:a2=;第3个等式:a3=;第4个等式:a4=;…请解答下列问题:(1)按以上规律列出第5个等式:a5==;(2)用含n的代数式表示第n个等式:an==(n为正整数);(3)直接写出当an=时,n的值为;(4)求a1+a2+a3+a4+a5+⋯+a100的值.26.(12分)点M,N在数轴上分别表示数m,n,若M,N两点之间的距离表示为MN,则MN=|m﹣n|.如图,已知数轴上点M,N分别表示数m,n,其中m<0,n>0.(1)若(m+4)2+|n﹣6|=0,求:①线段MN的中点A表示的数a是;②数轴上表示m和p的两点之间的距离是3,则有理数p是;(2)若在该数轴上有另一个点B表示的数为b.若b=﹣1,且MN=5BN,能否求出代数式2m+8n+1000的值?若能,请求出该值;若不能,请说明理由;(3)若MN=12,且OM=2ON,点Q从点O开始以每秒6个单位的速度向左运动,当点Q开始运动时,点M,N分别以每秒5个单位和每秒2个单位的速度同时向左运动,设运动时间为t秒,则代数式3MQ+2NQ﹣kOQ在某段时间内不随着t的变化而变化,求k的值.

2024-2025学年浙江省杭州市拱墅区文澜中学七年级(上)期中数学试卷参考答案与试题解析一.选择题(本题共10个小题,每小题3分,共30分)1.(3分)﹣4的倒数是()A.4 B.﹣4 C. D.﹣【答案】D【分析】根据乘积为1的两个数互为倒数,可得一个数的倒数.【解答】解:﹣4的倒数是﹣,故选:D.2.(3分)我国倡导的“一带一路”建设将促进我国与世界一些国家的互利合作,根据规划“一带一路”地区覆盖总人口为4400000000人,这个数用科学记数法表示为()A.44×108 B.4.4×108 C.4.4×109 D.4.4×1010【答案】C【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是非负数;当原数的绝对值<1时,n是负数.【解答】解:将4400000000用科学记数法表示为:4.4×109.故选:C.3.(3分)下列式子中,符合代数式书写的是()A. B. C.xy÷3 D.x×y【答案】A【分析】根据代数式的书写规则分别判断即可.【解答】解:(A)该代数式的书写符合要求,∴A符合题意;(B)带分数应写成假分数的形式,∴B不符合题意;(C)除法运算要写成分数的形式,∴C不符合题意;(D)字母与字母相乘时,乘号一般要省略,∴D不符合题意;故选:A.4.(3分)下列四个数:﹣3.14,﹣0.5,,中,属于无理数的是()A.﹣3.14 B.﹣0.5 C. D.【答案】D【分析】根据无理数的概念解答即可.【解答】解:﹣3.14,﹣0.5,是有理数;是无理数.故选:D.5.(3分)下列运算中,正确的是()A. B.=3 C. D.【答案】D【分析】根据二次根式的性质要化简方法,平方根、算术平方根、立方根的定义逐项进行判断即可.【解答】解:A.=|﹣4|=4,因此选项A不符合题意;B.=3,≠3,因此选项B不符合题意;C.=6,因此选项C不符合题意;D.=±7,因此选项D符合题意.故选:D.6.(3分)下列各式的计算结果正确的是()A.3x+5y=5xy B.7y2﹣5y2=2 C.8a﹣3a=5a D.5ab2﹣2a2b=3ab2【答案】C【分析】合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变,据此逐一判断即可.【解答】解:A.3x与5y不是同类项,所以不能合并,故本选项不合题意;B.7y2﹣5y2=2y2,故本选项不合题意;C.8a﹣3a=5a,故本选项符合题意;D.5ab2与2a2b不是同类项,所以不能合并,故本选项不合题意;故选:C.7.(3分)估计﹣2的大致范围为()A.2<﹣2<3 B.3<﹣2<4 C.4<﹣2<5 D.5<﹣2<6【答案】B【分析】根据被开方数越大,对应的算术平方根也越大,据此估算出的范围,即可得出﹣2的值的大致范围.【解答】解:∵,∴5,∴3,∴﹣2的值在3和4之间.故选:B.8.(3分)式子|x﹣7|﹣3的值可能是()A.﹣10 B.﹣7 C.﹣4 D.0【答案】D【分析】根据绝对值的实际意义,非负数的性质,得到|x﹣7|﹣3≥﹣3,结合四个选项,从而得到结果.【解答】解:∵|x﹣7|≥0,∴|x﹣7|﹣3≥﹣3,根据四个选项中,前三项﹣10,﹣7,﹣4均小于﹣3,只有D选项0大于﹣3,故选:D.9.(3分)下列说法中:①立方根等于本身的是﹣1、0、1;②的算术平方根是4;③两个无理数的和一定是无理数;④实数与数轴上的点是一一对应的;⑤是负分数;⑥3.40万是精确到百位的近似数.其中正确的个数是()A.2个 B.3个 C.4个 D.5个【答案】B【分析】根据立方根、算术平方根、无理数以及实数和数轴、近似数的性质逐一判断即可.【解答】解:①立方根等于本身的是﹣1、0、1,正确;②=4,4的算术平方根是2,即的算术平方根是2,原说法错误;③两个无理数的和不一定是无理数,如,原说法错误;④实数与数轴上的点是一一对应的,正确;⑤是无理数,不是负分数,原说法错误;⑥3.40万是精确到百位的近似数,正确;所以正确的是①④⑥,共3个,故选:B.10.(3分)若在正方形的四个顶点处依次标上“我”“爱”“数”“学”四个字,且将正方形放置在数轴上,其中“我”“爱”对应的数分别为﹣2和﹣1,如图,现将正方形绕着顶点按顺时针方向在数轴上向右无滑动地翻滚.例如,第一次翻滚后“数”所对应的数为0,则连续翻滚后数轴上数2024对应的字是()A.我 B.爱 C.数 D.学【答案】C【分析】根据题意可知:依次翻滚4次为一个周期,然后用2024除以4,进行计算,然后根据计算结果进行判断即可.【解答】解:由题意得:正方形的边长为1,∴依次翻滚4次为一个周期,∵2024÷4=506,第一次翻滚后“数”所对应的数为0,∴连续翻滚后数轴上数2024对应的字是“数”,故选:C.二.填空题(本题共10个小题,每小题4分,共40分)11.(4分)如果收入10元记作“+10”,那么支出5元记作﹣5.【答案】见试题解答内容【分析】根据正负数的含义,可得:收入记住“+”,则支出记作“﹣”,据此求解即可.【解答】解:如果收入10元记作“+10”,那么支出5元记作﹣5.故答案为:﹣5.12.(4分)小华今年a岁,小明比他小2岁,则小明的年龄是(a﹣2)岁.【答案】见试题解答内容【分析】依据两人年龄关系列式即可.【解答】解:∵小华今年a岁,小明比他小2岁,∴小明的年龄是(a﹣2)岁,故答案为:a﹣2.13.(4分)单项式的系数是,次数是3.【答案】,3.【分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.【解答】解:根据单项式系数、次数的定义,单项式的系数与次数分别是,3.故答案为:,3.14.(4分)若代数式x﹣2y的值是﹣1,则代数式8﹣x+2y的值是9.【答案】见试题解答内容【分析】首先把8﹣x+2y化成8﹣(x﹣2y),然后把x﹣2y=﹣1代入化简后的算式计算即可.【解答】解:∵x﹣2y=﹣1,∴8﹣x+2y=8﹣(x﹣2y)=8﹣(﹣1)=9.故答案为:9.15.(4分)如果﹣2xay与3x4yb是同类项,则a﹣b为3.【答案】见试题解答内容【分析】根据同类项的定义列出方程,再求解即可.【解答】解:由同类项定义可知a=4,b=1,∴a﹣b=4﹣1=3.故答案为:3.16.(4分)已知a、b互为相反数,c、d互为倒数,则=.【答案】见试题解答内容【分析】利用相反数,倒数的定义求出a+b=0,cd=1的值,代入原式计算即可得到结果.【解答】解:∵a和b互为相反数,c和d互为倒数,∴a+b=0,cd=1,∴===.故答案为:.17.(4分)如图(1),在4×4的方格中,每个小正方形的边长为1.(1)求图(1)中正方形ABCD的面积10.(2)如图(2),若点A在数轴上表示的数是﹣1,以A为圆心,AD为半径画圆弧与数轴的正半轴交于点E,则点E所表示的数是﹣1+.【答案】见试题解答内容【分析】(1)求出正方形ABCD边长即可得面积;(2)E表示的数比﹣1大,用﹣1加上AE长度即为E表示的数.【解答】解:(1)∵正方形ABCD边长为=,∴正方形ABCD的面积是()2=10,故答案为:10;(2)∵正方形ABCD边长为,∴AE=AD=,∴E表示的数比﹣1大,即E表示的数为﹣1+,故答案为:﹣1+.18.(4分)已知|a|=5,b2=4,c3=﹣8,若abc>0,则a﹣3b﹣2c的值为15或﹣7.【答案】15或﹣7.【分析】由|a|=5,b2=4,c3=﹣8知a=±5,b=±2,c=﹣2,结合abc>0,知a=5时,b=﹣2;a=﹣5时,b=2;再分别代入计算即可.【解答】解:∵|a|=5,b2=4,c3=﹣8,∴a=±5,b=±2,c=﹣2,又∵abc>0,∴a=5时,b=﹣2;a=﹣5时,b=2;当a=5、b=﹣2、c=﹣2时,原式=5﹣3×(﹣2)﹣2×(﹣2)=5+6+4=15;当a=﹣5、b=2、c=﹣2时,原式=﹣5﹣3×2﹣2×(﹣2)=﹣5﹣6+4=﹣7;故答案为:15或﹣7.19.(4分)如图,爱动脑筋的琪琪同学设计了一种“幻圆”游戏,将﹣1,3,﹣5,7,﹣9,11,﹣13,15分别填入图中的圆圈内,使横、竖以及内外两圈上的4个数字之和都相等,他已经将7,11,﹣13,15这四个数填入了圆圈,则图中a+b的值为2.【答案】见试题解答内容【分析】计算这8个数之和,求出横、竖以及内外两圈上的4个数字之和,从而求出c,进而求出空白圈内的数,最后求出a+b即可.【解答】解:﹣1+3﹣5+7﹣9+11﹣13+15=8,∵横、竖以及内外两圈上的4个数字之和都相等,∴内圈上4个数字之和与外圈上4个数字之和均为8÷2=4,∴c=4﹣(﹣13+11+15)=﹣9,∴空白圈内的数为4﹣(11+7+c)=4﹣(11+7﹣9)=﹣5,∴a+b=4﹣(﹣5+7)=2.故答案为:2.20.(4分)如图,是一个数值转换器,其工作原理如图所示.(1)当输入的x值为8时,则输出的y值为;(2)若输出的y是且10≤|x|<100,则输入的x的值为11或83或﹣79.【答案】(1);(2)11或83或﹣79.【分析】(1)把x=8代入进行计算即可;(2)根据题意可得:若经过一次转换,则|x﹣2|=3;若经过两次转换,则|x﹣2|=9;若经过三次转换,则|x﹣2|=81,若经过四次转换:|x﹣2|=6561,根据10≤|x|<100,即可得出结论.【解答】解:(1)输入的x值为8时,|x﹣2|=|8﹣2|=6,取算术平方根,∵∴输出的y值为,故答案为:;(2)根据题意可得:若经过一次转换:|x﹣2|=3,解得:x=5或﹣1,∵10≤|x|<100,∴x=5或﹣1均不符合题意;若经过两次转换:|x﹣2|=9,解得:x=11或x=﹣7(舍),若经过三次转换:|x﹣2|=81,解得:x=83或﹣79;若经过四次转换:|x﹣2|=6561,解得x=6563或﹣6559,∵10≤|x|<100,∴x=6563或﹣6559均不符合题意.故答案为:11或83或﹣79.三.解答题(本题共6个小题,共50分)21.(6分)计算:(1)(﹣11)+(﹣7);(2);(3).【答案】(1)﹣18;(2);(3)﹣2.【分析】(1)根据有理数加法法则计算即可;(2)先根据绝对值、算术平方根、立方根的定义计算,再合并即可;(3)先算乘方,再算乘除,最后算加减即可.【解答】解:(1)(﹣11)+(﹣7)=﹣(11+7)=﹣18;(2)==;(3)=﹣8﹣=﹣8﹣=﹣8﹣[(﹣8)﹣(﹣20)+(﹣18)]=﹣8﹣(﹣8+20﹣18)=﹣8﹣(﹣6)=﹣8+6=﹣2.22.(6分)把下列实数表示在数轴上,并比较它们的大小(用“<”连接).﹣3,0,|﹣2|,,(﹣1)2.<﹣3<0<(﹣1)2<|﹣2|【答案】数轴见解析,.【分析】先把含有绝对值符号的数化简,含有乘方和开方的进行计算,然后把各数表示在数轴上,并按照从左到右的顺序排列,再用小于号连接起来即可.【解答】解:|﹣2|=2,,(﹣1)2=1,各数在数轴上表示为:,∴,故答案为:.23.(8分)(1)化简:m﹣n+5m﹣4n;(2)先化简,再求值:2x2+4y2+(2y2﹣3x2)﹣2(y2﹣2x2)其中x=﹣1,.【答案】(1)6m﹣5n;(2)3x2+4y2,4.【分析】(1)先交换同类项的位置,然后合并同类项即可;(2)先根据去括号法则和合并同类项法则进行化简,再把x,y的值代入化简后的式子进行计算即可.【解答】解:(1)原式=m+5m﹣n﹣4n=6m﹣5n;(2)原式=2x2+4y2+2y2﹣3x2﹣2y2+4x2=2x2+4x2﹣3x2+4y2+2y2﹣2y2=3x2+4y2,当x=﹣1,时,原式===3+1=4.24.(8分)某小型工厂生产酸枣面和黄小米,每日两种产品合计生产1500袋,两种产品的成本和售价如下表,设每天生产酸枣面x袋.成本(元/袋)售价(元/袋)酸枣面4046黄小米1315(1)每天生产黄小米(1500﹣x)袋,两种产品每天的生产成本共(27x+19500)元.(结果用含x的式子表示)(2)用含x的式子表示每天获得的利润.(利润=售价﹣成本).(3)当x=600时,求每天的生产成本与每天获得的利润.【答案】(1)(1500﹣x);(27x+19500);(2)(4x+3000)元;(3)当x=600时,求每天的生产成本为35700元,每天获得的利润为5400元.【分析】(1)根据题意及表格列得代数式即可;(2)结合(1)中所求列得代数式即可;(3)将x=600代入前两问所求得的代数式中计算即可.【解答】解:(1)已知某小型工厂生产酸枣面和黄小米,每日两种产品合计生产1500袋,设每天生产酸枣面x袋,则每天生产黄小米(1500﹣x)袋,那么40x+13(1500﹣x)=40x+19500﹣13x=27x+19500(元),即两种产品每天的生产成本共(27x+19500)元,故答案为:(1500﹣x);(27x+19500);(2)(46﹣40)x+(15﹣13)(1500﹣x)=6x+3000﹣2x=4x+3000,即每天获得的利润为(4x+3000)元;(3)当x=600时,27x+19500=27×600+19500=35700;4x+3000=4×600+3000=5400;即当x=600时,求每天的生产成本为35700元,每天获得的利润为5400元.25.(10分)观察下列等式:第1个等式:a1=;第2个等式:a2=;第3个等式:a3=;第4个等式:a4=;…请解答下列问题:(1)按以上规律列出第5个等式:a5==×(﹣);(2)用含n的代数式表示第n个等式:an==×(﹣)(n为正整数);(3)直接写出当an=时,n的值为6;(4)求a1+a2+a3+a4+a5+⋯+a100的值.【答案】(1),×(﹣);(2),×(﹣);(3)6;(4).【分析】(1)利用规律即可解决问题;(2)利用规律即可解决问题;(3)利用规律展开,计算即可;(4)利用规律展开,去括号合并即可解决问题.【解答】解:(1)第5个等式:a5==×(﹣),故答案为:,×(﹣).(2)an==×(﹣),故答案为:,×(﹣).(3)an===.2n﹣1=11,∴n=6.故答案为:6;(4)a1+a2+a3+a4+…+a100=×(1﹣)+×(﹣)+×(﹣)+…+×(﹣)=×(1﹣)=.26.(12分)点M,N在数轴上分别表示数m,n,若M,N两点之间的距离表示为MN,则MN=|m﹣n|.如图,已知数轴上点M,N分别表示数m,n,其中m<0,n>0.(1)若(m+4)2+|n﹣6|=0,求:①线段MN的中点A表示的数a是1;②数轴上表示m和p的两点之间的距离是3,则有理数p是﹣6或0;(2)若在该数轴上有另一个点B表示的数为b.若b=﹣1,且MN=5BN,能否求出代数式2m+8n+1000的值?若能,请求出该值;若不能,请说明理由;(3)若MN=12,且OM=2ON,点Q从点O开始以每秒6个单位的速度向左

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论