版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
平行线的判定方法-专题训练一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(越秀区校级月考)如图,下列条件中,不能判定l1∥l2的是()A.∠1=∠3 B.∠2+∠4=180° C.∠2=∠3 D.∠4+∠5=180°2.(南岗区校级月考)如图,点E、F分别是AB、CD上的点,点G是BC的延长线上一点,且∠B=∠DCG=∠D,则下列判断不一定成立的是()A.AB∥CD B.AD∥BG C.∠B=∠AEF D.∠BEF+∠EFC=180°3.(五华区校级月考)如图,直线a、b被直线c所截,下列条件不能判定直线a与b平行的是()A.∠1=∠3 B.∠2+∠4=180° C.∠1=∠4 D.∠1+∠4=180°4.(江都区月考)如图,由下列已知条件推出的结论中,正确的是()A.由∠1=∠5,可以推出AD∥BC B.由∠2=∠6,可以推出AD∥BC C.由∠1+∠4=90°,可以推出AB∥CD D.由∠ABC+∠BCD=180°,可以推出AD∥BC5.(西城区校级月考)如图,给下列四个条件:①∠1=∠2;②∠3=∠4;③∠B=∠5;④∠B+∠BAD=180°.其中能使AB∥CD的共有()A.1个 B.2个 C.3个 D.4个6.(大洼区月考)如图下列条件中,不能判定直线AB∥CD的是(∠1=∠ACD)()A.∠1+∠A=180° B.∠2=∠B C.∠3=∠A D.∠3=∠B7.(西湖区校级月考)对于图中标记的各角,下列条件能够推理得到a∥b的是()A.∠1+∠4=180° B.∠2=∠4 C.∠1=∠4 D.∠3=∠48.(老城区校级月考)如图,下列条件:①∠1=∠2;②∠4=∠5;③∠2+∠5=180°;④∠1=∠3;⑤∠6=∠1+∠2;其中能判断直线l1∥l2的有()A.②③④ B.②③⑤ C.②④⑤ D.②④9.(渝北区校级月考)如图,直线a,b被直线c所截,现给出下列四个条件:①∠1=∠5;②∠1=∠7;③∠2+∠3=180°;④∠4=∠7.其中能说明a∥b的条件序号为()A.①② B.①③ C.①④ D.③④10.(西湖区校级月考)如图,下列四个条件中,能判断DE∥AC的是()A.∠2=∠4 B.∠3=∠4 C.∠AFE=∠ACB D.∠BED=∠C二、填空题(本大题共8小题,每小题3分,共24分)请把答案直接填写在横线上11.(京口区校级月考)如图,如果希望直线c∥d,那么需要添加的条件是:.(所有的可能)12.(番禺区校级月考)如图,直线AB、CD与直线EF分别相交于E、F,∠1=100°,当∠2=°时,能使AB∥CD.13.(西湖区校级月考)如图,∠2=∠3=65°,要使直线a∥b,则∠1=度.14.(西湖区校级月考)如图,给出下列条件:①∠3=∠4;②∠1=∠2;③EF∥CD,且∠D=∠4;④∠3+∠5=180°.其中,能推出AD∥BC的条件为.(填写序号)15.(西湖区校级月考)如图,若∠1=70°,∠2=34°,∠3=36°,则直线a与直线b的位置关系为.16.(西湖区校级月考)如图,根据以下条件:①∠1=∠2;②∠3=∠4;③∠2+∠3+∠D=180°.能判断AD∥BC的有.(填序号)17.(西湖区校级月考)两块含30°角的三角尺叠放如图所示,现固定三角尺ABC不动,将三角尺DEC绕顶点C顺时针转动,使两块三角尺至少有一个组边互相平行,且点D在直线BC的上方,则∠BCD所有可能符合的度数为.18.(沙坪坝区校级月考)(多选)如图,下列条件中能判断直线l1∥l2的有.A.∠1=∠2B.∠4=∠5C.∠2+∠4=180°D.∠1=∠3E.∠6=∠1+∠2三、解答题(本大题共6小题,共46分.解答时应写出文字说明、证明过程或演算步骤)19.(雨花区校级月考)如图,已知∠1=∠3,∠2+∠3=180°,请说明AB与DE平行的理由.解:将∠2的邻补角记作∠4,则∠2+∠4=°()因为∠2+∠3=180°()所以∠3=∠4()因为()所以∠1=∠4(等量代换)所以AB∥DE()20.(南开区校级月考)填空:已知:如图,B、C、E三点在同一直线上,A、F、E三点在同一直线上,∠1=∠2=∠E,∠3=∠4.求证:AB∥CD.证明:∵∠2=∠E∴(内错角相等,两直线平⾏)∴∠3=(两直线平⾏,内错角相等)∵∠3=∠4∴∠4=∠DAC()∵∠1=∠2∴∠1+∠CAF=∠2+∠CAF,()即∠BAF=∴∠4=∠BAF∴AB∥CD(同位⻆相等,两直线平⾏)21.(大武口区校级月考)如图,已知∠ADE=60°,DF平分∠ADE,∠1=30°,求证:DF∥BE证明:∵DF平分∠ADE(已知)∴=12∠∵∠ADE=60°(已知)∴=30°∵∠1=30°(已知)∴∴22.(西湖区校级月考)已知:如下图所示,BE平分∠ABC,∠CBF=∠CFB=65°,∠EDF=50°.求证:BC∥AE.23.(西湖区校级月考)如图,点F、E分别在AB、CD上,AE,DF分别与BC相交于H、G,∠A=∠D,∠1+∠2=180°,试说明:AB∥CD.24.(江都区月考)如图,∠CDA=∠CBA,DE平分∠CDA,BF平分∠CBA,且∠ADE=∠AED,试说明:(1)AB∥CD(2)DE∥BF.
平行线的判定方法-专题训练(解析版)一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(越秀区校级月考)如图,下列条件中,不能判定l1∥l2的是()A.∠1=∠3 B.∠2+∠4=180° C.∠2=∠3 D.∠4+∠5=180°【分析】直接利用平行线的判定方法分别分析得出答案.【解析】A、∵∠1=∠3,∴直线l1∥l2,故此选项不合题意;B、∵∠2+∠4=180°,∴直线l1∥l2,故此选项不合题意;C、∠2=∠3,不能得出直线l1∥l2,故此选项符合题意;D、∵∠2=∠5,4+∠5=180°,∴4+∠2=180°,∴直线l1∥l2,故此选项不合题意.故选:C.2.(南岗区校级月考)如图,点E、F分别是AB、CD上的点,点G是BC的延长线上一点,且∠B=∠DCG=∠D,则下列判断不一定成立的是()A.AB∥CD B.AD∥BG C.∠B=∠AEF D.∠BEF+∠EFC=180°【分析】根据平行线的判定推出AB∥DC,AD∥BG,再根据平行线的性质逐个判断即可.【解析】A、∵∠B=∠DCG=∠D,∴AB∥DC,AD∥BG,正确,故本选项不符合题意;B、∵∠B=∠DCG=∠D,∴AB∥DC,AD∥BG,正确,故本选项不符合题意;C、根据AB∥DC,AD∥BG不能推出EF∥BC,所以不能推出∠B=∠AEF,错误,故本选项符合题意;D、∵AB∥CD,∴∠BEF+∠EFC=180°,正确,故本选项不符合题意;故选:C.3.(五华区校级月考)如图,直线a、b被直线c所截,下列条件不能判定直线a与b平行的是()A.∠1=∠3 B.∠2+∠4=180° C.∠1=∠4 D.∠1+∠4=180°【分析】根据同位角相等,两直线平行;同旁内角互补,两直线平行进行判断即可.【解析】由∠1=∠3,可得直线a与b平行,故A能判定;由∠2+∠4=180°,∠5+∠4=180°,可得∠2=∠5,故直线a与b平行,故B能判定;由∠1=∠4,∠4=∠3,可得∠1=∠3,故直线a与b平行,故C能判定;由∠1+∠4=180°,不能判定直线a与b平行,故选:D.4.(江都区月考)如图,由下列已知条件推出的结论中,正确的是()A.由∠1=∠5,可以推出AD∥BC B.由∠2=∠6,可以推出AD∥BC C.由∠1+∠4=90°,可以推出AB∥CD D.由∠ABC+∠BCD=180°,可以推出AD∥BC【分析】根据平行线的判定定理对各选项进行逐一判断即可.【解析】A、∵∠1=∠5,∴AB∥CD,故本选项错误;B、∵∠2=∠6,∴AD∥BC,故本选项正确;C、由∠1+∠4=90°无法证明AB∥CD,故本选项错误;D、∵∠ABC+∠BCD=180°,∴AB∥CD,故本选项错误.故选:B.5.(西城区校级月考)如图,给下列四个条件:①∠1=∠2;②∠3=∠4;③∠B=∠5;④∠B+∠BAD=180°.其中能使AB∥CD的共有()A.1个 B.2个 C.3个 D.4个【分析】利用平行线的判定方法进行分析即可.【解析】①∵∠1=∠2,∴AD∥BC(内错角相等,两直线平行),但无法得出AB∥CD,故①不符合题意;②∵∠3=∠4,∴AB∥CD(内错角相等,两直线平行),故②符合题意;③∵∠B=∠5,∴AB∥CD(同位角相等,两直线平行),故③符合题意;④∵∠B+∠BAD=180°,∴AB∥CD(同旁内角互补,两直线平行),故④符合题意;故选:C.6.(大洼区月考)如图下列条件中,不能判定直线AB∥CD的是(∠1=∠ACD)()A.∠1+∠A=180° B.∠2=∠B C.∠3=∠A D.∠3=∠B【分析】直接用平行线的判定判断即可.【解析】A、∵∠1+∠A=180°,可以得到AB∥CD,∴不符合题意,B、∵∠2=∠B,可以得到AB∥CD,∴不符合题意,C、∵∠3=∠A,得到AB∥CD,∴不符合题意,D、∵∠3=∠B,不能得到AB∥CD,∴符合题意,故选:D.7.(西湖区校级月考)对于图中标记的各角,下列条件能够推理得到a∥b的是()A.∠1+∠4=180° B.∠2=∠4 C.∠1=∠4 D.∠3=∠4【分析】直接利用平行线的判定方法分别分析得出答案.【解析】如图所示:A、∵∠4+∠5=180°,∠1+∠4=180°,∴∠1=∠5,∴a∥b,故此选项符合题意;B、∠2=∠4,无法得到a∥b,故此选项不合题意;C、∠1=∠4,无法得到a∥b,故此选项不合题意;D、∠3=∠4,无法得到a∥b,故此选项不合题意;故选:A.8.(老城区校级月考)如图,下列条件:①∠1=∠2;②∠4=∠5;③∠2+∠5=180°;④∠1=∠3;⑤∠6=∠1+∠2;其中能判断直线l1∥l2的有()A.②③④ B.②③⑤ C.②④⑤ D.②④【分析】根据平行线的判定定理,对各小题进行逐一判断即可.【解析】①∵∠1=∠2不能得到l1∥l2,故本条件不合题意;②∵∠4=∠5,∴l1∥l2,故本条件符合题意;③∵∠2+∠5=180°不能得到l1∥l2,故本条件不合题意;④∵∠1=∠3,∴l1∥l2,故本条件符合题意;⑤∵∠6=∠2+∠3=∠1+∠2,∴∠1=∠3,∴l1∥l2,故本条件符合题意.故选:C.9.(渝北区校级月考)如图,直线a,b被直线c所截,现给出下列四个条件:①∠1=∠5;②∠1=∠7;③∠2+∠3=180°;④∠4=∠7.其中能说明a∥b的条件序号为()A.①② B.①③ C.①④ D.③④【分析】根据同位角相等两直线平行可得①②能判定a∥b.【解析】①∠1=∠5根据同位角相等两直线平行可得a∥b;②∠1=∠7再由∠5=∠7可得∠1=∠5根据同位角相等两直线平行可得a∥b;③∠2+∠3=180°不能判定a∥b;④∠4=∠7不能判定a∥b.故选:A.10.(西湖区校级月考)如图,下列四个条件中,能判断DE∥AC的是()A.∠2=∠4 B.∠3=∠4 C.∠AFE=∠ACB D.∠BED=∠C【分析】根据平行线的判定方法一一判断即可.【解析】∵∠3=∠4,∴DE∥AC,故选:B.二、填空题(本大题共8小题,每小题3分,共24分)请把答案直接填写在横线上11.(京口区校级月考)如图,如果希望直线c∥d,那么需要添加的条件是:∠1=∠2或∠3=∠4.(所有的可能)【分析】根据平行线的判定方法:同位角相等,两直线平行;内错角相等,两直线平行可得答案.【解析】当∠1=∠2时,根据同位角相等,两直线平行可得c∥d;当∠3=∠4时,根据内错角相等,两直线平行可得c∥d;故答案为:∠1=∠2或∠3=∠4.12.(番禺区校级月考)如图,直线AB、CD与直线EF分别相交于E、F,∠1=100°,当∠2=80°时,能使AB∥CD.【分析】先根据邻补角的定义求出∠BEF的度数,再根据平行线的判定定理即可得出结论.【解析】∵∠1=100°,∴∠BEF=180°﹣∠1=180°﹣100°=80°,∵AB∥CD,∴∠2=∠BEF=80°.故答案为:80.13.(西湖区校级月考)如图,∠2=∠3=65°,要使直线a∥b,则∠1=50度.【分析】根据拼多多的判定解决问题即可.【解析】要使直线a∥b,必须∠1+∠2+∠3=180°,∴∠1=180°﹣65°﹣65°=50°,故答案为50.14.(西湖区校级月考)如图,给出下列条件:①∠3=∠4;②∠1=∠2;③EF∥CD,且∠D=∠4;④∠3+∠5=180°.其中,能推出AD∥BC的条件为①③④.(填写序号)【分析】根据平行线的判定方法结合题目所给的条件进行推理即可.【解析】①∵∠3=∠4,∴AD∥BC;②∵∠1=∠2,∴AB∥CD;③∵EF∥CD,∴∠D=∠3,∵∠D=∠4,∴∠3=∠4,∴AD∥BC;④∵∠3+∠5=180°,∠4+∠5=180°,∴∠3=∠4,∴AD∥BC,故答案为:①③④15.(西湖区校级月考)如图,若∠1=70°,∠2=34°,∠3=36°,则直线a与直线b的位置关系为a∥b.【分析】利用三角形的外角的性质求出∠4,由∠4=∠1即可判断.【解析】∵∠4=∠2+∠3,∠2=34°,∠3=36°,∴∠4=34+36°=70°,∵∠1=70°,∴∠4=∠1,∴a∥b.故答案为a∥b.16.(西湖区校级月考)如图,根据以下条件:①∠1=∠2;②∠3=∠4;③∠2+∠3+∠D=180°.能判断AD∥BC的有①③.(填序号)【分析】根据平行线的判定定理对各选项进行逐一判断即可.【解析】①∠1=∠2,可得AD∥BC;②∠3=∠4,可得AB∥CD;③∠2+∠3+∠D=180°,可得AD∥BC,故答案为:①③17.(西湖区校级月考)两块含30°角的三角尺叠放如图所示,现固定三角尺ABC不动,将三角尺DEC绕顶点C顺时针转动,使两块三角尺至少有一个组边互相平行,且点D在直线BC的上方,则∠BCD所有可能符合的度数为30°或60°或90°或120°.【分析】有7种情形分别画出图形求解即可.【解析】如图1中,当DE∥AB时,∠BCD=30°如图2中,当AB∥CE时,∠BCD=60°.如图3中,当DE∥BC时,∠BCD=90°.如图4中,当AB∥CD时,∠BCD=120°综上所述,满足条件的∠BCD的值为30°或60°和90°或120°.18.(沙坪坝区校级月考)(多选)如图,下列条件中能判断直线l1∥l2的有BCDE.A.∠1=∠2B.∠4=∠5C.∠2+∠4=180°D.∠1=∠3E.∠6=∠1+∠2【分析】要证明两直线平行,则要找到同位角、内错角相等,同旁内角互补等.【解析】A、∠1和∠2不是直线l1、l2被第三条直线所截形成的角,故不能判断直线l1∥l2.B、∵∠4=∠5,∴l1∥l2(同位角相等两直线平行).C、∠2、∠4是直线l1、l2被第三条直线所截形成的同旁内角,故∠2+∠4=180°能判断直线l1∥l2.D、∵∠1=∠3,∴l1∥l2(内错角相等两直线平行).E、作l1∥l,∴∠1=∠7,∵∠6=∠7+∠8,∴∠8=∠2,∴l∥l2,∴l1∥l2.故答案为:BCDE.三、解答题(本大题共6小题,共46分.解答时应写出文字说明、证明过程或演算步骤)19.(雨花区校级月考)如图,已知∠1=∠3,∠2+∠3=180°,请说明AB与DE平行的理由.解:将∠2的邻补角记作∠4,则∠2+∠4=180°(邻补角的意义)因为∠2+∠3=180°(已知)所以∠3=∠4(同角的补角相等)因为∠1=∠3(已知)所以∠1=∠4(等量代换)所以AB∥DE(同位角相等,两直线平行)【分析】根据平行线的判定解答即可.【解析】将∠2的邻补角记作∠4,则∠2+∠4=180°(邻补角的意义)因为∠2+∠3=180°(已知)所以∠3=∠4(同角的补角相等)因为∠1=∠3(已知)所以∠1=∠4(等量代换)所以AB∥DE(同位角相等,两直线平行)故答案为:180,邻补角的意义;已知;同角的补角相等;∠1=∠3;等量代换;同位角相等,两直线平行.20.(南开区校级月考)填空:已知:如图,B、C、E三点在同一直线上,A、F、E三点在同一直线上,∠1=∠2=∠E,∠3=∠4.求证:AB∥CD.证明:∵∠2=∠E∴AD∥BC(内错角相等,两直线平⾏)∴∠3=∠DAC(两直线平⾏,内错角相等)∵∠3=∠4∴∠4=∠DAC(等量代换)∵∠1=∠2∴∠1+∠CAF=∠2+∠CAF,(等式性质)即∠BAF=∠DAC∴∠4=∠BAF∴AB∥CD(同位⻆相等,两直线平⾏)【分析】根据平行线的判定可得AD∥BC,根据平行线的性质和等量关系可得∠4=∠BAC,再根据平行线的判定可得AB∥CD.【解析】证明:∵∠2=∠E,∴AD∥BC(内错角相等,两直线平行),∴∠3=∠DAC(两直线平行,内错角相等),∵∠3=∠4,∴∠4=∠DAC(等量代换),∵∠1=∠2∴∠1+∠CAF=∠2+∠CAF(等式性质),即∠BAF=∠DAC,∴∠4=∠BAF,∴AB∥CD(同位⻆相等,两直线平行).故答案为:AD∥BC,∠DAC,等量代换,等式性质,∠DAC.21.(大武口区校级月考)如图,已知∠ADE=60°,DF平分∠ADE,∠1=30°,求证:DF∥BE证明:∵DF平分∠ADE(已知)∴∠EDF=12∠∵∠ADE=60°(已知)∴∠EDF=30°∵∠1=30°(已知)∴∠1=∠EDF∴DF∥BE【分析】由角平分线的定义得出∠EDF=12∠ADE=30°,得出∠1=∠【解析】证明:∵DF平分∠ADE,(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年专业美容设备租赁业务合作合同版B版
- 房屋租赁及物业管理2024年度合同3篇
- 文化传媒劳动合同三篇
- 环境检测承揽合同三篇
- 退休规划的重要性与方法计划
- 门诊部服务流程优化与总结计划
- 防水材料2024年度销售合同
- 2024年协议到期后续服务主体更改协议版B版
- 山东省济宁市梁山县2024-2025学年九年级上学期10月月考英语试题(原卷版)
- 全新版权许可使用协议(2024版)3篇
- 四川省绵阳市三台县2024-2025学年高二上学期期中考试历史试题 含解析
- 业主封阳台安装窗户物业免责协议协议书
- 《司法鉴定工作实务》课件
- 重大事故隐患重点事项排查清单1
- 六年级上册计算题专项练习1000题及答案
- 积极心理学:塑造刚健自信的中国青年智慧树知到课后章节答案2023年下上海思博职业技术学院
- 愚公移山英文 -中国故事英文版课件
- 境外人员临时住宿登记表
- 世界卫生组织手术部位感染预防指南(完整版)
- 新高考背景下普通高中实施选课走班制问题研究
- 冬季施工危险源冬季安全常识冬季施工安全管理
评论
0/150
提交评论