湖南工商大学《视觉传达设计基础》2021-2022学年第一学期期末试卷_第1页
湖南工商大学《视觉传达设计基础》2021-2022学年第一学期期末试卷_第2页
湖南工商大学《视觉传达设计基础》2021-2022学年第一学期期末试卷_第3页
湖南工商大学《视觉传达设计基础》2021-2022学年第一学期期末试卷_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

站名:站名:年级专业:姓名:学号:凡年级专业、姓名、学号错写、漏写或字迹不清者,成绩按零分记。…………密………………封………………线…………第1页,共1页湖南工商大学《视觉传达设计基础》

2021-2022学年第一学期期末试卷题号一二三四总分得分一、单选题(本大题共30个小题,每小题1分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、计算机视觉中的动作识别是对视频中人物或物体的动作进行分类和识别。以下关于动作识别的描述,不准确的是()A.动作识别需要分析视频中的时空特征来理解动作的模式和类别B.双流卷积网络在动作识别任务中被广泛应用,分别处理空间和时间信息C.动作识别在体育分析、视频监控和智能安防等领域具有重要的应用价值D.动作识别技术已经非常成熟,能够准确识别各种复杂和细微的动作2、计算机视觉在文物保护和修复中具有潜在应用。假设要对一件受损的古代书画进行数字化修复,以下关于计算机视觉在文物保护中的作用的描述,哪一项是不正确的?()A.可以通过图像增强和去噪技术改善书画的视觉效果B.利用图像匹配和拼接技术还原残缺的部分C.计算机视觉技术能够完全恢复文物的原始状态,使其与未受损时一模一样D.为文物修复专家提供辅助决策和参考依据3、计算机视觉中的遥感图像分析用于获取地球表面的信息。假设要从卫星遥感图像中分析土地利用类型和植被覆盖情况,同时要克服图像的大尺度和复杂的地物分布。以下哪种遥感图像分析方法最为有效?()A.基于光谱特征的分析B.基于纹理特征的分析C.基于对象的图像分析D.基于深度学习的分析4、在计算机视觉中,图像检索是根据用户的需求从图像数据库中查找相关的图像。以下关于图像检索的说法,错误的是()A.图像检索可以基于图像的内容,如颜色、形状和纹理等特征B.深度学习方法可以学习到更具语义的图像表示,提高图像检索的准确性C.图像检索在电子商务、数字图书馆和图像搜索引擎等领域有广泛的应用D.图像检索的性能只取决于图像特征的提取,与数据库的组织和索引无关5、计算机视觉在医学图像分析中有着重要作用。假设要通过眼底图像检测糖尿病性视网膜病变,以下关于模型训练中数据标注的难度,哪一项是最为显著的?()A.病变区域的边界模糊,难以精确标注B.眼底图像的质量参差不齐,影响标注准确性C.标注人员的医学知识不足,导致标注错误D.数据量过大,标注工作耗时费力6、计算机视觉中的图像超分辨率技术用于提高图像的分辨率。假设要将一张低分辨率的图像恢复成高分辨率图像,以下关于图像超分辨率方法的描述,正确的是:()A.基于插值的图像超分辨率方法能够生成清晰逼真的高分辨率图像B.深度学习中的生成对抗网络(GAN)在图像超分辨率任务中无法发挥作用C.图像超分辨率的效果不受原始低分辨率图像的质量和内容的限制D.结合先验知识和深度学习的方法可以改善图像超分辨率的效果7、在计算机视觉中,图像分类是一项重要任务。假设我们要对大量的动物图片进行分类,将其分为猫、狗、鸟等类别。以下关于图像分类方法的描述,哪一项是不准确的?()A.基于深度学习的卷积神经网络(CNN)在图像分类任务中表现出色,能够自动学习图像的特征B.传统的机器学习方法如支持向量机(SVM)在处理大规模图像数据时,性能通常不如深度学习方法C.图像分类只需要考虑图像的颜色和形状等低层次特征,高层语义信息对分类结果影响不大D.为了提高分类准确率,可以使用数据增强技术,如旋转、翻转、裁剪等操作来扩充数据集8、在计算机视觉的遥感图像分析中,假设要从卫星遥感图像中提取土地利用信息,以下哪种技术可能对区分不同类型的土地覆盖有帮助?()A.高光谱分析B.纹理分析C.形状分析D.以上都有可能9、计算机视觉在智能交通系统中的应用可以优化交通流量和提高安全性。假设要通过计算机视觉监测道路上的车辆拥堵情况。以下关于计算机视觉在智能交通中的描述,哪一项是错误的?()A.可以通过车辆检测和计数来评估道路的拥堵程度B.能够识别车辆的类型和行驶方向,为交通管理提供数据支持C.计算机视觉在智能交通中的应用完全不受恶劣天气和光照条件的影响D.可以与交通信号控制系统联动,实现自适应的交通信号配时10、在计算机视觉的图像配准任务中,将不同视角或时间拍摄的图像进行对齐,以下哪种变换模型可能适用于具有较大形变的图像配准?()A.刚性变换B.仿射变换C.投影变换D.非线性变换11、计算机视觉在虚拟现实(VR)和增强现实(AR)中的应用可以提供更沉浸式的体验。假设要在VR环境中实时跟踪用户的头部运动并相应地更新场景,以下关于VR/AR计算机视觉应用的描述,正确的是:()A.简单的基于传感器的跟踪方法能够满足VR中高精度的头部运动跟踪需求B.计算机视觉在VR/AR中的应用主要关注图像生成,而不是跟踪和定位C.结合视觉特征提取和深度学习的头部运动跟踪算法可以实现低延迟和高精度的跟踪D.VR/AR环境中的光照条件和物体遮挡对计算机视觉算法的性能没有影响12、在计算机视觉中,以下哪种方法常用于图像的语义分割中的边界优化?()A.条件随机场B.全连接条件随机场C.深度学习D.以上都是13、在计算机视觉的图像分类任务中,假设数据集存在类别不平衡问题,某些类别的样本数量远远少于其他类别。以下哪种方法可以缓解这种不平衡对分类模型的影响?()A.对少数类进行过采样或对多数类进行欠采样B.只使用多数类的样本进行训练C.不考虑类别不平衡,直接训练模型D.随机选择样本进行训练14、计算机视觉中的视频目标跟踪中,假设目标在跟踪过程中发生了严重的形变。以下关于处理目标形变的方法描述,正确的是:()A.基于模板匹配的跟踪方法能够自适应地处理目标形变,保持跟踪的准确性B.特征点跟踪方法对目标形变不敏感,在这种情况下仍然能够可靠跟踪C.深度学习中的孪生网络在目标形变时容易丢失目标,无法继续跟踪D.结合多种特征和模型更新策略可以提高对目标形变的跟踪鲁棒性15、计算机视觉中的动作识别是对视频中的人体动作进行分类和理解。假设我们要分析一段体育比赛的视频,识别其中运动员的各种动作,以下哪种方法能够有效地捕捉动作的时空特征?()A.基于手工特征和分类器的方法B.基于深度学习的时空卷积网络C.基于光流和轨迹的方法D.基于隐马尔可夫模型的方法16、在计算机视觉的视觉跟踪与监控应用中,需要对特定目标进行持续的跟踪和监测。假设要对一个在大型商场中移动的可疑人员进行跟踪,同时要应对人群遮挡和环境变化。以下哪种视觉跟踪与监控技术在这种情况下能够提供更可靠的跟踪结果?()A.多目标跟踪算法B.基于深度学习的单目标跟踪C.基于粒子滤波的跟踪D.基于特征匹配的跟踪17、计算机视觉中的表情识别旨在判断图像或视频中人物的表情。假设要开发一个用于在线教育的表情识别系统,以下关于表情特征的提取,哪一项是需要重点关注的?()A.提取面部肌肉的细微运动作为特征B.仅考虑眼睛和嘴巴的形状变化C.忽略面部的整体轮廓,只关注局部特征D.不进行任何特征提取,直接使用原始图像进行分类18、计算机视觉中的目标跟踪是指在视频序列中持续跟踪特定目标。假设要跟踪一个在复杂场景中运动的人物,以下关于目标跟踪算法的描述,正确的是:()A.基于卡尔曼滤波的跟踪算法能够准确预测目标的运动轨迹,但对目标外观变化适应性差B.基于粒子滤波的跟踪算法计算复杂度低,适用于实时跟踪要求高的场景C.基于深度学习的跟踪算法需要大量的训练数据,并且在目标被遮挡时容易丢失D.目标跟踪算法只要在初始帧中准确检测到目标,就能够在后续帧中一直保持跟踪的准确性19、在计算机视觉的行人检测任务中,假设要在一个拥挤的街道场景中准确检测出行人,场景中存在光照变化、人群遮挡和复杂背景。以下哪种特征表示方法在这种情况下可能更具鲁棒性?()A.基于形状的特征,如行人的轮廓B.基于颜色的特征,如行人衣服的颜色C.基于深度学习的特征,通过卷积神经网络自动学习D.不提取任何特征,直接对原始图像进行检测20、在计算机视觉的图像去噪任务中,假设要去除一张受到严重噪声污染的图像中的噪声,同时尽可能保留图像的细节和边缘信息。以下哪种去噪方法可能更适合?()A.中值滤波,用邻域中值代替像素值B.均值滤波,用邻域平均值代替像素值C.基于深度学习的图像去噪模型,如DnCNND.不进行任何去噪处理,保留原始噪声图像21、在计算机视觉的三维重建任务中,假设要从一组不同角度拍摄的二维图像中重建出物体的三维模型。这些图像可能存在噪声和拍摄误差。为了获得准确的三维重建结果,以下哪种技术是重要的?()A.基于立体视觉的方法,通过匹配不同图像中的对应点B.直接使用二维图像的平均信息来估计三维形状C.忽略图像中的噪声和误差,进行简单的重建D.随机生成三维模型,然后与二维图像进行匹配22、在计算机视觉的视频目标跟踪中,假设目标在视频中被短暂遮挡。以下关于处理遮挡情况的方法,哪一项是不太有效的?()A.利用目标在遮挡前的运动轨迹预测其位置B.完全放弃对被遮挡目标的跟踪,等待其重新出现C.结合目标的外观特征和运动信息进行跟踪D.借助周围背景和其他相关物体的信息辅助跟踪23、在计算机视觉的立体视觉中,需要通过两个或多个相机获取的图像来计算深度信息。假设要为一个自动驾驶汽车构建立体视觉系统,以测量与前方障碍物的距离,同时要考虑实时性和准确性的要求。以下哪种立体匹配算法在这种应用场景中表现最优?()A.基于区域的匹配B.基于特征的匹配C.基于深度学习的匹配D.全局优化匹配24、在计算机视觉的特征提取中,SIFT(Scale-InvariantFeatureTransform,尺度不变特征变换)特征是一种经典的方法。假设我们要对一组包含不同视角和缩放比例的物体图像进行匹配,SIFT特征的哪个特性使其在这种情况下表现出色?()A.对旋转和尺度变化具有不变性B.计算速度快,效率高C.特征维度低,易于存储和处理D.对光照变化不敏感25、在计算机视觉的图像去噪任务中,去除图像中的噪声。假设要对一张受到严重噪声污染的图像进行去噪处理,以下关于图像去噪方法的描述,正确的是:()A.均值滤波方法能够在去除噪声的同时很好地保留图像的细节B.中值滤波对椒盐噪声的去除效果不佳C.基于深度学习的图像去噪方法可以自适应地学习噪声模式和图像特征D.图像去噪不会引入任何新的失真或模糊26、在计算机视觉的三维重建中,从多幅二维图像恢复物体的三维结构。假设要对一个古建筑进行三维重建,以下关于三维重建方法的描述,哪一项是不正确的?()A.基于立体视觉的方法通过匹配不同视角下的图像特征点来计算深度信息,实现三维重建B.运动恢复结构(SfM)算法可以从一系列无序的图像中重建场景的三维结构C.激光扫描技术能够直接获取物体表面的三维点云数据,是一种高精度的三维重建方法D.三维重建的结果只取决于输入的图像质量,与重建算法的选择无关27、在计算机视觉的图像检索任务中,根据用户提供的图像或特征在数据库中查找相似的图像。假设要从一个大型图像库中找到与给定图像相似的图片,以下关于图像检索方法的描述,正确的是:()A.基于图像的颜色和纹理特征进行检索能够满足所有的检索需求B.深度学习中的卷积神经网络提取的特征在图像检索中不如手工设计的特征有效C.考虑图像的语义信息和高层特征可以提高图像检索的准确性和相关性D.图像检索的速度和效率不受数据库大小和特征维度的影响28、在计算机视觉的行人重识别任务中,假设要在多个摄像头拍摄的画面中找到同一个行人。以下关于特征融合的方法,哪一项是不太合理的?()A.将行人的外观特征和步态特征进行融合B.简单地将不同特征进行拼接,不考虑权重分配C.根据特征的重要性为其分配不同的权重进行融合D.利用深度学习模型自动学习特征的融合方式29、图像去模糊是计算机视觉中的一个难题。假设一张图像由于相机抖动而产生模糊,以下哪种去模糊方法可能需要对模糊核有较为准确的估计?()A.基于深度学习的去模糊方法B.盲去卷积方法C.维纳滤波去模糊方法D.均值滤波去模糊方法30、计算机视觉中的医学图像分析中,假设要对肿瘤进行检测和分割。以下关于医学图像分析方法的描述,正确的是:()A.由于医学图像的特殊性,传统的计算机视觉方法无法应用于医学图像分析B.深度学习方法在医学图像分析中能够准确检测肿瘤,但对小肿瘤容易漏检C.多模态医学图像融合可以提供更丰富的信息,但融合算法复杂,效果不稳定D.医学图像分析的结果不需要经过医生的审核和确认,可以直接用于诊断二、应用题(本大题共5个小题,共25分)1、(本题5分)对一段视频中的行人进行检测和跟踪,并计算行人的运动轨迹。2、(本题5分)在自动驾驶场景中,利用计算机视觉检测道路标志和交通信号灯。3、(本题5分)运用图像识别算法,对不同类型的自行车图像进行分类和识别。4、(本题5分)通过图像分割技术,将卫星图像中的森林火灾区域和未受灾区域进行划分。5、(本题5分)基于深度学习的图像风格迁移技术,将一张照片转换为指定的艺术风格。三、简答题(本大题共5个小题,共

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论