版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届黑龙江省牡丹江市爱民区第一高级中学高三第六次模拟考试数学试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.“哥德巴赫猜想”是近代三大数学难题之一,其内容是:一个大于2的偶数都可以写成两个质数(素数)之和,也就是我们所谓的“1+1”问题.它是1742年由数学家哥德巴赫提出的,我国数学家潘承洞、王元、陈景润等在哥德巴赫猜想的证明中做出相当好的成绩.若将6拆成两个正整数的和,则拆成的和式中,加数全部为质数的概率为()A. B. C. D.2.点在曲线上,过作轴垂线,设与曲线交于点,,且点的纵坐标始终为0,则称点为曲线上的“水平黄金点”,则曲线上的“水平黄金点”的个数为()A.0 B.1 C.2 D.33.已知,函数在区间上恰有个极值点,则正实数的取值范围为()A. B. C. D.4.设为虚数单位,复数,则实数的值是()A.1 B.-1 C.0 D.25.设P={y|y=-x2+1,x∈R},Q={y|y=2x,x∈R},则A.PQ B.QPC.Q D.Q6.已知函数.设,若对任意不相等的正数,,恒有,则实数a的取值范围是()A. B.C. D.7.已知甲、乙两人独立出行,各租用共享单车一次(假定费用只可能为、、元).甲、乙租车费用为元的概率分别是、,甲、乙租车费用为元的概率分别是、,则甲、乙两人所扣租车费用相同的概率为()A. B. C. D.8.已知复数z满足(其中i为虚数单位),则复数z的虚部是()A. B.1 C. D.i9.各项都是正数的等比数列的公比,且成等差数列,则的值为()A. B.C. D.或10.当输入的实数时,执行如图所示的程序框图,则输出的不小于103的概率是()A. B. C. D.11.若函数()的图象过点,则()A.函数的值域是 B.点是的一个对称中心C.函数的最小正周期是 D.直线是的一条对称轴12.已知正项等比数列的前项和为,则的最小值为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.下图是一个算法流程图,则输出的的值为__________.14.过动点作圆:的切线,其中为切点,若(为坐标原点),则的最小值是__________.15.设复数满足,则_________.16.已知某几何体的三视图如图所示,则该几何体外接球的表面积是______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)某商店举行促销反馈活动,顾客购物每满200元,有一次抽奖机会(即满200元可以抽奖一次,满400元可以抽奖两次,依次类推).抽奖的规则如下:在一个不透明口袋中装有编号分别为1,2,3,4,5的5个完全相同的小球,顾客每次从口袋中摸出一个小球,共摸三次,每次摸出的小球均不放回口袋,若摸得的小球编号一次比一次大(如1,2,5),则获得一等奖,奖金40元;若摸得的小球编号一次比一次小(如5,3,1),则获得二等奖,奖金20元;其余情况获得三等奖,奖金10元.(1)某人抽奖一次,求其获奖金额X的概率分布和数学期望;(2)赵四购物恰好满600元,假设他不放弃每次抽奖机会,求他获得的奖金恰好为60元的概率.18.(12分)为响应“坚定文化自信,建设文化强国”,提升全民文化修养,引领学生“读经典用经典”,某广播电视台计划推出一档“阅读经典”节目.工作人员在前期的数据采集中,在某高中学校随机抽取了120名学生做调查,统计结果显示:样本中男女比例为3:2,而男生中喜欢阅读中国古典文学和不喜欢的比例是7:5,女生中喜欢阅读中国古典文学和不喜欢的比例是5:3.(1)填写下面列联表,并根据联表判断是否有的把握认为喜欢阅读中国古典文学与性别有关系?男生女生总计喜欢阅读中国古典文学不喜欢阅读中国古典文学总计(2)为做好文化建设引领,实验组把该校作为试点,和该校的学生进行中国古典文学阅读交流.实验人员已经从所调查的120人中筛选出4名男生和3名女生共7人作为代表,这7个代表中有2名男生代表和2名女生代表喜欢中国古典文学.现从这7名代表中任选3名男生代表和2名女生代表参加座谈会,记为参加会议的人中喜欢古典文学的人数,求5的分布列及数学期望附表及公式:.19.(12分)已知椭圆的焦点为,,离心率为,点P为椭圆C上一动点,且的面积最大值为,O为坐标原点.(1)求椭圆C的方程;(2)设点,为椭圆C上的两个动点,当为多少时,点O到直线MN的距离为定值.20.(12分)设抛物线过点.(1)求抛物线C的方程;(2)F是抛物线C的焦点,过焦点的直线与抛物线交于A,B两点,若,求的值.21.(12分)已知函数(1)若,不等式的解集;(2)若,求实数的取值范围.22.(10分)已知函数.(1)当时.①求函数在处的切线方程;②定义其中,求;(2)当时,设,(为自然对数的底数),若对任意给定的,在上总存在两个不同的,使得成立,求的取值范围.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】
列出所有可以表示成和为6的正整数式子,找到加数全部为质数的只有,利用古典概型求解即可.【详解】6拆成两个正整数的和含有的基本事件有:(1,5),(2,4),(3,3),(4,2),(5,1),而加数全为质数的有(3,3),根据古典概型知,所求概率为.故选:A.【点睛】本题主要考查了古典概型,基本事件,属于容易题.2、C【解析】
设,则,则,即可得,设,利用导函数判断的零点的个数,即为所求.【详解】设,则,所以,依题意可得,设,则,当时,,则单调递减;当时,,则单调递增,所以,且,有两个不同的解,所以曲线上的“水平黄金点”的个数为2.故选:C【点睛】本题考查利用导函数处理零点问题,考查向量的坐标运算,考查零点存在性定理的应用.3、B【解析】
先利用向量数量积和三角恒等变换求出,函数在区间上恰有个极值点即为三个最值点,解出,,再建立不等式求出的范围,进而求得的范围.【详解】解:令,解得对称轴,,又函数在区间恰有个极值点,只需解得.故选:.【点睛】本题考查利用向量的数量积运算和三角恒等变换与三角函数性质的综合问题.(1)利用三角恒等变换及辅助角公式把三角函数关系式化成或的形式;(2)根据自变量的范围确定的范围,根据相应的正弦曲线或余弦曲线求值域或最值或参数范围.4、A【解析】
根据复数的乘法运算化简,由复数的意义即可求得的值.【详解】复数,由复数乘法运算化简可得,所以由复数定义可知,解得,故选:A.【点睛】本题考查了复数的乘法运算,复数的意义,属于基础题.5、C【解析】
解:因为P={y|y=-x2+1,x∈R}={y|y1},Q={y|y=2x,x∈R}={y|y>0},因此选C6、D【解析】
求解的导函数,研究其单调性,对任意不相等的正数,构造新函数,讨论其单调性即可求解.【详解】的定义域为,,当时,,故在单调递减;不妨设,而,知在单调递减,从而对任意、,恒有,即,,,令,则,原不等式等价于在单调递减,即,从而,因为,所以实数a的取值范围是故选:D.【点睛】此题考查含参函数研究单调性问题,根据参数范围化简后构造新函数转换为含参恒成立问题,属于一般性题目.7、B【解析】
甲、乙两人所扣租车费用相同即同为1元,或同为2元,或同为3元,由独立事件的概率公式计算即得.【详解】由题意甲、乙租车费用为3元的概率分别是,∴甲、乙两人所扣租车费用相同的概率为.故选:B.【点睛】本题考查独立性事件的概率.掌握独立事件的概率乘法公式是解题基础.8、A【解析】
由虚数单位i的运算性质可得,则答案可求.【详解】解:∵,∴,,则化为,∴z的虚部为.故选:A.【点睛】本题考查了虚数单位i的运算性质、复数的概念,属于基础题.9、C【解析】分析:解决该题的关键是求得等比数列的公比,利用题中所给的条件,建立项之间的关系,从而得到公比所满足的等量关系式,解方程即可得结果.详解:根据题意有,即,因为数列各项都是正数,所以,而,故选C.点睛:该题应用题的条件可以求得等比数列的公比,而待求量就是,代入即可得结果.10、A【解析】
根据循环结构的运行,直至不满足条件退出循环体,求出的范围,利用几何概型概率公式,即可求出结论.【详解】程序框图共运行3次,输出的的范围是,所以输出的不小于103的概率为.故选:A.【点睛】本题考查循环结构输出结果、几何概型的概率,模拟程序运行是解题的关键,属于基础题.11、A【解析】
根据函数的图像过点,求出,可得,再利用余弦函数的图像与性质,得出结论.【详解】由函数()的图象过点,可得,即,,,故,对于A,由,则,故A正确;对于B,当时,,故B错误;对于C,,故C错误;对于D,当时,,故D错误;故选:A【点睛】本题主要考查了二倍角的余弦公式、三角函数的图像与性质,需熟记性质与公式,属于基础题.12、D【解析】
由,可求出等比数列的通项公式,进而可知当时,;当时,,从而可知的最小值为,求解即可.【详解】设等比数列的公比为,则,由题意得,,得,解得,得.当时,;当时,,则的最小值为.故选:D.【点睛】本题考查等比数列的通项公式的求法,考查等比数列的性质,考查学生的计算求解能力,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、3【解析】
分析程序中各变量、各语句的作用,根据流程图所示的顺序,即可得出结论.【详解】解:初始,第一次循环:;第二次循环:;第三次循环:;经判断,此时跳出循环,输出.故答案为:【点睛】本题考查了程序框图的应用问题,解题的关键是对算法语句的理解,属基础题.14、【解析】解答:由圆的方程可得圆心C的坐标为(2,2),半径等于1.由M(a,b),则|MN|2=(a−2)2+(b−2)2−12=a2+b2−4a−4b+7,|MO|2=a2+b2.由|MN|=|MO|,得a2+b2−4a−4b+7=a2+b2.整理得:4a+4b−7=0.∴a,b满足的关系为:4a+4b−7=0.求|MN|的最小值,就是求|MO|的最小值.在直线4a+4b−7=0上取一点到原点距离最小,由“垂线段最短”得,直线OM垂直直线4a+4b−7=0,由点到直线的距离公式得:MN的最小值为:.15、.【解析】
利用复数的运算法则首先可得出,再根据共轭复数的概念可得结果.【详解】∵复数满足,∴,∴,故而可得,故答案为.【点睛】本题考查了复数的运算法则,共轭复数的概念,属于基础题.16、【解析】
先由三视图在长方体中将其还原成直观图,再利用球的直径是长方体体对角线即可解决.【详解】由三视图知该几何体是一个三棱锥,如图所示长方体对角线长为,所以三棱锥外接球半径为,故所求外接球的表面积.故答案为:.【点睛】本题考查几何体三视图以及几何体外接球的表面积,考查学生空间想象能力以及基本计算能力,是一道基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)分布见解析,期望为;(2).【解析】
(1)先明确X的可能取值,分别求解其概率,然后写出分布列,利用期望公式可求期望;(2)获得的奖金恰好为60元,可能是三次二等奖,也可能是一次一等奖,两次三等奖,然后分别求解概率即可.【详解】(1)由题意知,随机变量X的可能取值为10,20,40且,,所以,即随机变量X的概率分布为X102040P所以随机变量X的数学期望.(2)由题意知,赵四有三次抽奖机会,设恰好获得60元为事件A,因为60=20×3=40+10+10,所以.【点睛】本题主要考查随机变量的分布列及数学期望,明确随机变量的所有取值是求解的第一步,再求解对应的概率,侧重考查数学建模的核心素养.18、(1)见解析,没有(2)见解析,【解析】
(1)根据题目所给数据填写列联表,计算出的值,由此判断出没有的把握认为喜欢阅读中国古典文学与性别有关系.(2)先判断出的所有可能取值,然后根据古典概型概率计算公式,计算出分布列并求得数学期望.【详解】(1)男生女生总计喜欢阅读中国古典文学423072不喜欢阅读中国古典文学301848总计7248120所以,没有的把握认为喜欢阅读中国古典文学与性别有关系.(2)设参加座谈会的男生中喜欢中国古典文学的人数为,女生中喜欢古典文学的人数为,则.且;;.所以的分布列为则.【点睛】本小题主要考查列联表独立性检验,考查随机变量分布列和数学期望的求法,考查数据处理能力,属于中档题.19、(1);(2)当=0时,点O到直线MN的距离为定值.【解析】
(1)的面积最大时,是短轴端点,由此可得,再由离心率及可得,从而得椭圆方程;(2)在直线斜率存在时,设其方程为,现椭圆方程联立消元()后应用韦达定理得,注意,一是计算,二是计算原点到直线的距离,两者比较可得结论.【详解】(1)因为在椭圆上,当是短轴端点时,到轴距离最大,此时面积最大,所以,由,解得,所以椭圆方程为.(2)在时,设直线方程为,原点到此直线的距离为,即,由,得,,,所以,,,所以当时,,,为常数.若,则,,,,,综上所述,当=0时,点O到直线MN的距离为定值.【点睛】本题考查求椭圆方程与椭圆的几何性质,考查直线与椭圆的位置关系,考查运算求解能力.解题方法是“设而不求”法.在直线与圆锥曲线相交时常用此法通过韦达定理联系已知式与待求式.20、(1)(2)【解析】
(1)代入计算即可.(2)设直线AB的方程为,再联立直线与抛物线的方程,消去可得的一元二次方程,再根据韦达定理与求解,进而利用弦长公式求解即可.【详解】解:(1)因为抛物线过点,所以,所以,抛物线的方程为(2)由题意知直线AB的斜率存在,可设直线AB的方程为,,.因为,所以,联立,化简得,所以,,所以,,解得,所以.【点睛】本题考查抛物线的方程以及联立直线与抛物线求弦长的简单应用.属于基础题.21、(1)(2)【解析】
(1)依题意可得,再用零点分段法分类讨论可得;(2)依题意可得对恒成立,根据绝对值的几何意义将绝对值去掉,分别求
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 电力工程实践课程设计
- matlab课程设计小球碰撞仿真
- jsp课程设计网上购物
- java课程设计上机实验报告
- 骆驼祥子读后感(汇编15篇)
- 艺术培训中心策划
- 《商务英语翻译》课件-填制中英双语销售合同-任务详解1
- 中班儿歌主题课程设计
- 中小班手工疫情课程设计
- 《建筑材料》课件-煤沥青
- 急诊科临床诊疗常规技术操作规范
- 维修电工日巡检、修维记录表
- 菌糠的利用课件
- 华北理工大学中药学教案(64学时-田春雨)
- 四年级上册数学课件 -9.1 平均数 ︳青岛版(五四学制)(共21张PPT)
- 药品生产质量管理规范(2010版)(含13个附录)
- 小学数学苏教版六年级上册《长方体和正方体整理与复习》教案(公开课)
- DB11T 1411-2017 节能监测服务平台建设规范
- 《快乐的罗嗦》教学反思
- 国际金属材料对照表
- (完整版)非煤矿山开发流程图
评论
0/150
提交评论