江西省宜春实验中学2025届高考数学考前最后一卷预测卷含解析_第1页
江西省宜春实验中学2025届高考数学考前最后一卷预测卷含解析_第2页
江西省宜春实验中学2025届高考数学考前最后一卷预测卷含解析_第3页
江西省宜春实验中学2025届高考数学考前最后一卷预测卷含解析_第4页
江西省宜春实验中学2025届高考数学考前最后一卷预测卷含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江西省宜春实验中学2025届高考数学考前最后一卷预测卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在正项等比数列{an}中,a5-a1=15,a4-a2=6,则a3=()A.2 B.4 C. D.82.国家统计局服务业调查中心和中国物流与采购联合会发布的2018年10月份至2019年9月份共12个月的中国制造业采购经理指数(PMI)如下图所示.则下列结论中错误的是()A.12个月的PMI值不低于50%的频率为B.12个月的PMI值的平均值低于50%C.12个月的PMI值的众数为49.4%D.12个月的PMI值的中位数为50.3%3.△ABC中,AB=3,,AC=4,则△ABC的面积是()A. B. C.3 D.4.已知角的终边经过点,则A. B.C. D.5.若执行如图所示的程序框图,则输出的值是()A. B. C. D.46.设,,,则()A. B. C. D.7.设,其中a,b是实数,则()A.1 B.2 C. D.8.已知集合,,则()A. B.C. D.9.已知函数,若所有点,所构成的平面区域面积为,则()A. B. C.1 D.10.某工厂只生产口罩、抽纸和棉签,如图是该工厂年至年各产量的百分比堆积图(例如:年该工厂口罩、抽纸、棉签产量分别占、、),根据该图,以下结论一定正确的是()A.年该工厂的棉签产量最少B.这三年中每年抽纸的产量相差不明显C.三年累计下来产量最多的是口罩D.口罩的产量逐年增加11.已知类产品共两件,类产品共三件,混放在一起,现需要通过检测将其区分开来,每次随机检测一件产品,检测后不放回,直到检测出2件类产品或者检测出3件类产品时,检测结束,则第一次检测出类产品,第二次检测出类产品的概率为()A. B. C. D.12.下列选项中,说法正确的是()A.“”的否定是“”B.若向量满足,则与的夹角为钝角C.若,则D.“”是“”的必要条件二、填空题:本题共4小题,每小题5分,共20分。13.函数的单调增区间为__________.14.“直线l1:与直线l2:平行”是“a=2”的_______条件(填“充分不必要”、“必要不充分”、“充分必要”或“既不充分又不必要”).15.若,,则___________.16.某高校组织学生辩论赛,六位评委为选手成绩打出分数的茎叶图如图所示,若去掉一个最高分,去掉一个最低分,则所剩数据的平均数与中位数的差为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)设数列是等比数列,,已知,(1)求数列的首项和公比;(2)求数列的通项公式.18.(12分)已知的图象在处的切线方程为.(1)求常数的值;(2)若方程在区间上有两个不同的实根,求实数的值.19.(12分)已知数列满足:对一切成立.(1)求数列的通项公式;(2)求数列的前项和.20.(12分)已知直线过椭圆的右焦点,且交椭圆于A,B两点,线段AB的中点是,(1)求椭圆的方程;(2)过原点的直线l与线段AB相交(不含端点)且交椭圆于C,D两点,求四边形面积的最大值.21.(12分)已知函数,,设.(1)当时,求函数的单调区间;(2)设方程(其中为常数)的两根分别为,,证明:.(注:是的导函数)22.(10分)某房地产开发商在其开发的某小区前修建了一个弓形景观湖.如图,该弓形所在的圆是以为直径的圆,且米,景观湖边界与平行且它们间的距离为米.开发商计划从点出发建一座景观桥(假定建成的景观桥的桥面与地面和水面均平行),桥面在湖面上的部分记作.设.(1)用表示线段并确定的范围;(2)为了使小区居民可以充分地欣赏湖景,所以要将的长度设计到最长,求的最大值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】

根据题意得到,,解得答案.【详解】,,解得或(舍去).故.故选:.【点睛】本题考查了等比数列的计算,意在考查学生的计算能力.2、D【解析】

根据图形中的信息,可得频率、平均值的估计、众数、中位数,从而得到答案.【详解】对A,从图中数据变化看,PMI值不低于50%的月份有4个,所以12个月的PMI值不低于50%的频率为,故A正确;对B,由图可以看出,PMI值的平均值低于50%,故B正确;对C,12个月的PMI值的众数为49.4%,故C正确,;对D,12个月的PMI值的中位数为49.6%,故D错误故选:D.【点睛】本题考查频率、平均值的估计、众数、中位数计算,考查数据处理能力,属于基础题.3、A【解析】

由余弦定理求出角,再由三角形面积公式计算即可.【详解】由余弦定理得:,又,所以得,故△ABC的面积.故选:A【点睛】本题主要考查了余弦定理的应用,三角形的面积公式,考查了学生的运算求解能力.4、D【解析】因为角的终边经过点,所以,则,即.故选D.5、D【解析】

模拟程序运行,观察变量值的变化,得出的变化以4为周期出现,由此可得结论.【详解】;如此循环下去,当时,,此时不满足,循环结束,输出的值是4.故选:D.【点睛】本题考查程序框图,考查循环结构.解题时模拟程序运行,观察变量值的变化,确定程序功能,可得结论.6、A【解析】

先利用换底公式将对数都化为以2为底,利用对数函数单调性可比较,再由中间值1可得三者的大小关系.【详解】,,,因此,故选:A.【点睛】本题主要考查了利用对数函数和指数函数的单调性比较大小,属于基础题.7、D【解析】

根据复数相等,可得,然后根据复数模的计算,可得结果.【详解】由题可知:,即,所以则故选:D【点睛】本题考查复数模的计算,考验计算,属基础题.8、A【解析】

根据对数性质可知,再根据集合的交集运算即可求解.【详解】∵,集合,∴由交集运算可得.故选:A.【点睛】本题考查由对数的性质比较大小,集合交集的简单运算,属于基础题.9、D【解析】

依题意,可得,在上单调递增,于是可得在上的值域为,继而可得,解之即可.【详解】解:,因为,,所以,在上单调递增,则在上的值域为,因为所有点所构成的平面区域面积为,所以,解得,故选:D.【点睛】本题考查利用导数研究函数的单调性,理解题意,得到是关键,考查运算能力,属于中档题.10、C【解析】

根据该厂每年产量未知可判断A、B、D选项的正误,根据每年口罩在该厂的产量中所占的比重最大可判断C选项的正误.综合可得出结论.【详解】由于该工厂年至年的产量未知,所以,从年至年棉签产量、抽纸产量以及口罩产量的变化无法比较,故A、B、D选项错误;由堆积图可知,从年至年,该工厂生产的口罩占该工厂的总产量的比重是最大的,则三年累计下来产量最多的是口罩,C选项正确.故选:C.【点睛】本题考查堆积图的应用,考查数据处理能力,属于基础题.11、D【解析】

根据分步计数原理,由古典概型概率公式可得第一次检测出类产品的概率,不放回情况下第二次检测出类产品的概率,即可得解.【详解】类产品共两件,类产品共三件,则第一次检测出类产品的概率为;不放回情况下,剩余4件产品,则第二次检测出类产品的概率为;故第一次检测出类产品,第二次检测出类产品的概率为;故选:D.【点睛】本题考查了分步乘法计数原理的应用,古典概型概率计算公式的应用,属于基础题.12、D【解析】

对于A根据命题的否定可得:“∃x0∈R,x02-x0≤0”的否定是“∀x∈R,x2-x>0”,即可判断出;对于B若向量满足,则与的夹角为钝角或平角;对于C当m=0时,满足am2≤bm2,但是a≤b不一定成立;对于D根据元素与集合的关系即可做出判断.【详解】选项A根据命题的否定可得:“∃x0∈R,x02-x0≤0”的否定是“∀x∈R,x2-x>0”,因此A不正确;选项B若向量满足,则与的夹角为钝角或平角,因此不正确.选项C当m=0时,满足am2≤bm2,但是a≤b不一定成立,因此不正确;选项D若“”,则且,所以一定可以推出“”,因此“”是“”的必要条件,故正确.故选:D.【点睛】本题考查命题的真假判断与应用,涉及知识点有含有量词的命题的否定、不等式性质、向量夹角与性质、集合性质等,属于简单题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】

先求出导数,再在定义域上考虑导数的符号为正时对应的的集合,从而可得函数的单调增区间.【详解】函数的定义域为.,令,则,故函数的单调增区间为:.故答案为:.【点睛】本题考查导数在函数单调性中的应用,注意先考虑函数的定义域,再考虑导数在定义域上的符号,本题属于基础题.14、必要不充分【解析】

先求解直线l1与直线l2平行的等价条件,然后进行判断.【详解】“直线l1:与直线l2:平行”等价于a=±2,故“直线l1:与直线l2:平行”是“a=2”的必要不充分条件.故答案为:必要不充分.【点睛】本题主要考查充分必要条件的判定,把已知条件进行等价转化是求解这类问题的关键,侧重考查逻辑推理的核心素养.15、【解析】

因为,所以,又,所以,则,所以.16、【解析】

先根据茎叶图求出平均数和中位数,然后可得结果.【详解】剩下的四个数为83,85,87,95,且这四个数的平均数,这四个数的中位数为,则所剩数据的平均数与中位数的差为.【点睛】本题主要考查茎叶图的识别和统计量的计算,侧重考查数据分析和数学运算的核心素养.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】

本题主要考查了等比数列的通项公式的求解,数列求和的错位相减求和是数列求和中的重点与难点,要注意掌握.(1)设等比数列{an}的公比为q,则q+q2=6,解方程可求q(2)由(1)可求an=a1•qn-1=2n-1,结合数列的特点,考虑利用错位相减可求数列的和解:(1)(2),两式相减:18、(1);(2)或.【解析】

(1)求出,由,建立方程求解,即可求出结论;(2)根据函数的单调区间,极值,做出函数在的图象,即可求解.【详解】(1),由题意知,解得(舍去)或.(2)当时,故方程有根,根为或,+0-0+极大值极小值由表可见,当时,有极小值0.由上表可知的减函数区间为,递增区间为,.因为,.由数形结合可得或.【点睛】本题考查导数的几何意义,应用函数的图象是解题的关键,意在考查直观想象、逻辑推理和数学计算能力,属于中档题.19、(1);(2)【解析】

(1)先通过求得,再由得,和条件中的式子作差可得答案;(2)变形可得,通过裂项求和法可得答案.【详解】(1)①,当时,,,当时,②,①②得:,,适合,故;(2),.【点睛】本题考查法求数列的通项公式,考查裂项求和,是基础题.20、(1)(2)【解析】

(1)由直线可得椭圆右焦点的坐标为,由中点可得,且由斜率公式可得,由点在椭圆上,则,二者作差,进而代入整理可得,即可求解;(2)设直线,点到直线的距离为,则四边形的面积为,将代入椭圆方程,再利用弦长公式求得,利用点到直线距离求得,根据直线l与线段AB(不含端点)相交,可得,即,进而整理换元,由二次函数性质求解最值即可.【详解】(1)直线与x轴交于点,所以椭圆右焦点的坐标为,故,因为线段AB的中点是,设,则,且,又,作差可得,则,得又,所以,因此椭圆的方程为.(2)由(1)联立,解得或,不妨令,易知直线l的斜率存在,设直线,代入,得,解得或,设,则,则,因为到直线的距离分别是,由于直线l与线段AB(不含端点)相交,所以,即,所以,四边形的面积,令,,则,所以,当,即时,,因此四边形面积的最大值为.【点睛】本题考查求椭圆的标准方程,考查椭圆中的四边形面积问题,考查直线与椭圆的位置关系的应用,考查运算能力.21、(1)在上单调递增,在上单调递减.(2)见解析【解析】

(1)求出导函数,由确定增区间,由确定减区间;(2)求出含有参数的,再求出,由的两根是,得,计算,代入后可得结论.【详解】解:,函数的定义域为,.(1)当时,,由得,由得,故函数在上单调递增,在上单调递减.(2)证明:由条件可得,,,方程的两根分别为,,,且,可得..【点睛】本题考查用导数研究函数的单调性,考查导数的运算、方程根

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论