版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2021-2022学年湖北省黄冈市八年级第一学期期中数学试卷一、选择题(本大题共8小题,每小题3分,共24分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A. B. C. D.2.一个多边形的内角和是外角和的2倍,这个多边形的边数是()A.4 B.6 C.8 D.103.如图,将△ABC一角折叠,若∠1+∠2=80°,则∠B+∠C=()A.40° B.100° C.140° D.160°4.已知D是△ABC的边AB上一点,DF交AC于点E,DE=EF,FC∥AB,若BD=2,CF=5,则AB的长为()A.1 B.3 C.5 D.75.如图,△ABC中,∠CAB和∠CBA的角平分线交于点P,连接PA、PB、PC,若△PAB、△PBC、△PAC的面积分别为S1、S2、S3,则()A.S1<S2+S3 B.S1=S2+S3 C.S1>S2+S3 D.无法确定S1与(S2+S3)的大小6.如图,在△ABC中,分别以点A和点C为圆心,大于AC的长为半径作弧,两弧相交于点M、N,直线MN与AC、BC分别相交于E和D,连接AD,若AE=3cm,△ABC的周长为13cm,则△ABD的周长是()A.7cm B.10cm C.16cm D.19cm7.如图,∠MON=36°,点P是∠MON中的一定点,点A、B分别在射线OM、ON上移动.当△PAB的周长最小时,∠APB的大小为()A.100° B.104° C.108° D.116°8.如图,点P为定角∠AOB平分线上的一个定点,且∠MPN与∠AOB互补.若∠MPN在绕点P旋转的过程中,其两边分别与OA、OB相交于M、N两点,则以下结论:①PM=PN;②OM+ON的值不变;③MN的长不变;④四边形PMON的面积不变,其中,正确结论的是()A.①②③ B.①②④ C.①③④ D.②③④二、填空题(本大题共8小题,每小题3分,共24分)9.点(﹣3,﹣5)关于y轴对称的点的坐标是.10.△ABC的两边长分别是2和7,且第三边为奇数,则第三边长为.11.如图,以AD为高的三角形共有个.12.如图,在△ABC和△DEF中,点B,F,C,E在同一直线上,BF=CE,AB∥DE,请添加一个条件,使△ABC≌△DEF,这个添加的条件可以是(只需写一个,不添加辅助线).13.等腰三角形一腰上的高与另一腰的夹角为50°,那么这个等腰三角形的底角为.14.如图,在△ABC中,∠B、∠C的平分线交于O点,过O点作EF∥BC交AB、AC于点E、F.当EF=6,BE=4时,CF的长为.15.如图,OP平分∠AOB,∠AOP=15°,PC∥OA,PC=4,PD⊥OA,垂足为D,则PD=.16.如图,在△ABC中,AB=AC=10,BC=12,AD=8,AD是∠BAC的平分线.若P,Q分别是AD和AC上的动点,则PC+PQ的最小值是.三、解答题(本大题共8小题,共72分)17.已知,在△ABC中.(1)若∠B=∠A+15°,∠C=∠B+15°,求△ABC的各内角度数;(2)若三边长分别为a、b、c,试化简代数式|a+b﹣c|﹣|b﹣c﹣a|.18.如图,在△ABC中,AD是BC边上的高,∠B=30°,∠ACB=100°,AE平分∠BAC,求∠EAD的度数.19.如图,在△ABC中,点D为BC上一点,E、F两点分别在边AB、AC上,若BE=CD,BD=CF,∠B=∠C,∠A=50°,求∠EDF的度数.20.如图,△ABC是等边三角形,D、E分别是BC、AC边上的点,连接AD、BE,且AD、BE相交于点P,∠AEB=∠CDA.(1)求∠BPD的度数.(2)过点B作BQ⊥AD于Q,若PQ=3,PE=1,求BE的长.21.如图,已知△ABC三个顶点的坐标分别为A(﹣1,﹣1),B(﹣4,﹣2),C(﹣1,﹣4).(1)点A关于y轴对称的点的坐标是;(2)画出△ABC关于x轴对称的△A1B1C1分别写出点A1,B1,C1的坐标;(3)求△A1B1C1的面积.22.如图,△ABC中,AC的垂直平分线DE交AC于点E,交∠ABC的平分线于点D,DF⊥BC于点F,连接AD.(1)求证AB+CF=BF;(2)若∠ABC=70°,求∠DAE的度数.23.如图,CA=CB,CD=CE,∠ACB=∠DCE=α,AD、BE相交于点H(1)求证:AD=BE.(2)连接CH,求证:CH平分∠AHE.(3)求∠AHE的度数(用含α的式子表示).24.如图,已知A(a,b),AB⊥y轴于B,且满足+(b﹣2)2=0,(1)求A点坐标;(2)分别以AB,AO为边作等边三角形△ABC和△AOD,如图1试判定线段AC和DC的数量关系和位置关系.(3)如图2过A作AE⊥x轴于E,F,G分别为线段OE,AE上的两个动点,满足∠FBG=45°,试探究的值是否发生变化?如果不变,请说明理由并求其值;如果变化,请说明理由.
参考答案一、选择题(本大题共8小题,每小题3分,共24分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A. B. C. D.【分析】根据轴对称图形的概念对各选项分析判断利用排除法求解.解:A、是轴对称图形,故本选项正确;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误.故选:A.2.一个多边形的内角和是外角和的2倍,这个多边形的边数是()A.4 B.6 C.8 D.10【分析】多边形的外角和是360°,则内角和是2×360=720°.设这个多边形是n边形,内角和是(n﹣2)•180°,这样就得到一个关于n的方程组,从而求出边数n的值.解:设这个多边形是n边形,根据题意,得(n﹣2)×180°=2×360,解得:n=6.即这个多边形的边数是6.故选:B.3.如图,将△ABC一角折叠,若∠1+∠2=80°,则∠B+∠C=()A.40° B.100° C.140° D.160°【分析】利用三角形的外角的性质求出∠EAD,再利用三角形内角和定理求出∠B+∠C即可.解:连接AA′.∵∠1=∠3+∠4,∠2=∠5+∠6,∴∠1+∠2=∠3+∠4+∠5+∠6=∠EAD+∠EA′D,∵∠EAD=∠EA′D,∴∠1+∠2=2∠EAD=160°,∴∠EAD=40°,∴∠B+∠C=180°﹣40°=140°,故选:C.4.已知D是△ABC的边AB上一点,DF交AC于点E,DE=EF,FC∥AB,若BD=2,CF=5,则AB的长为()A.1 B.3 C.5 D.7【分析】利用ASA证明三角形ADE和CEF全等,进而得出AD=CF=5,即可求出AB的长.解:∵FC∥AB,∴∠ADF=∠F.∵∠AED=∠CEF,DE=EF,∴△ADE≌△CEF(ASA).∴AD=CF=5.又∵BD=2,∴AB=AD+BD=5+2=7,故选:D.5.如图,△ABC中,∠CAB和∠CBA的角平分线交于点P,连接PA、PB、PC,若△PAB、△PBC、△PAC的面积分别为S1、S2、S3,则()A.S1<S2+S3 B.S1=S2+S3 C.S1>S2+S3 D.无法确定S1与(S2+S3)的大小【分析】如图,过P点作PD⊥AB于D,PE⊥AC于E,PF⊥BC于F,利用角平分线的性质得到PD=PE=PF,再利用三角形面积公式得到S1=•AB•PD,S2=•BC•PF,S3=•AC•PE,然后根据三角形三边的关系求解.解:过P点作PD⊥AB于D,PE⊥AC于E,PF⊥BC于F,如图,∵∠CAB和∠CBA的角平分线交于点P,∴PD=PE=PF,∵S1=•AB•PD,S2=•BC•PF,S3=•AC•PE,∴S2+S3=•(AC+BC)•PD,∵AB<AC+BC,∴S1<S2+S3.故选:A.6.如图,在△ABC中,分别以点A和点C为圆心,大于AC的长为半径作弧,两弧相交于点M、N,直线MN与AC、BC分别相交于E和D,连接AD,若AE=3cm,△ABC的周长为13cm,则△ABD的周长是()A.7cm B.10cm C.16cm D.19cm【分析】利用基本作图得到MN垂直平分AC,根据线段垂直平分线的性质得到AE=CE=3,DA=DC,再利用三角形周长的定义和等线段代换得到AB+BD+DA的值即可.解:由作法得MN垂直平分AC,∴AE=CE=3,DA=DC,∵△ABC的周长为13cm,即AB+BC+AC=13,∴AB+BD+DA+6=13,即AB+BD+DA=7,∴△ABD的周长为7cm.故选:A.7.如图,∠MON=36°,点P是∠MON中的一定点,点A、B分别在射线OM、ON上移动.当△PAB的周长最小时,∠APB的大小为()A.100° B.104° C.108° D.116°【分析】设点P关于OM、ON对称点分别为P′、P″,当点A、B在P′P″上时,△PAB周长为PA+AB+BP=P′P″,此时周长最小.根据轴对称的性质,可求出∠APB的度数.解:如图所示:分别作点P关于OM、ON的对称点P′、P″,连接OP′、OP″、P′P″,P′P″交OM、ON于点A、B,连接PA、PB,此时△PAB周长的最小值等于P′P″的长.由轴对称性质可得,OP′=OP″=OP,∠P′OA=∠POA,∠P″OB=∠POB,所以∠P′OP″=2∠MON=2×36°=72°,所以∠OP′P″=∠OP″P′=(180°﹣72°)÷2=54°,又因为∠BPO=∠OP″B=54°,∠APO=∠AP′O=54°,所以∠APB=∠APO+∠BPO=108°.故选:C.8.如图,点P为定角∠AOB平分线上的一个定点,且∠MPN与∠AOB互补.若∠MPN在绕点P旋转的过程中,其两边分别与OA、OB相交于M、N两点,则以下结论:①PM=PN;②OM+ON的值不变;③MN的长不变;④四边形PMON的面积不变,其中,正确结论的是()A.①②③ B.①②④ C.①③④ D.②③④【分析】如图作PE⊥OA于E,PF⊥OB于F.只要证明△POE≌△POF,△PEM≌△PFN,即可一一判断解:如图作PE⊥OA于E,PF⊥OB于F.∵∠PEO=∠PFO=90°,∴∠EPF+∠AOB=180°,∵∠MPN+∠AOB=180°,∴∠EPF=∠MPN,∴∠EPM=∠FPN,∵OP平分∠AOB,PE⊥OA于E,PF⊥OB于F,∴∠PEO=∠PFO=90°,在△POE和△POF中,,∴△POE≌△POF(AAS),∴OE=OF,PE=PF,在△PEM和△PFN中,,∴△PEM≌△PFN(ASA),∴EM=NF,PM=PN,故①正确,∴S△PEM=S△PNF,∴S四边形PMON=S四边形PEOF=定值,故④正确,∵OM+ON=OE+ME+(OF﹣NF)=2OE,是定值,故②正确,在旋转过程中,△PMN是等腰三角形,形状是相似的,因为PM的长度是变化的,所以MN的长度是变化的,故③错误,故选:B.二、填空题(本大题共8小题,每小题3分,共24分)9.点(﹣3,﹣5)关于y轴对称的点的坐标是(3,﹣5).【分析】根据关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变可得答案.解:点(﹣3,﹣5)关于y轴对称的点的坐标是(3,﹣5),故答案为:(3,﹣5).10.△ABC的两边长分别是2和7,且第三边为奇数,则第三边长为7.【分析】先根据三角形的任意两边之和大于第三边,任意两边之差小于第三边求出第三边点的取值范围,再选择奇数即可.解:∵7﹣2=5,7+2=9,∴5<第三边<9,∵第三边为奇数,∴第三边长为7.故答案为:7.11.如图,以AD为高的三角形共有6个.【分析】由于AD⊥BC于D,图中共有6个三角形,它们都有一边在直线CB上,由此即可确定以AD为高的三角形的个数.解:∵AD⊥BC于D,而图中有一边在直线CB上,且以A为顶点的三角形有6个,∴以AD为高的三角形有6个.故答案为:612.如图,在△ABC和△DEF中,点B,F,C,E在同一直线上,BF=CE,AB∥DE,请添加一个条件,使△ABC≌△DEF,这个添加的条件可以是AB=ED(或∠A=∠D或AC∥DF等)(只需写一个,不添加辅助线).【分析】根据等式的性质可得BC=EF,根据平行线的性质可得∠B=∠E,再添加AB=ED可利用SAS判定△ABC≌△DEF.解:添加AB=ED(或∠A=∠D或AC∥DF等),∵BF=CE,∴BF+FC=CE+FC,即BC=EF,∵AB∥DE,∴∠B=∠E,在△ABC和△DEF中,∴△ABC≌△DEF(SAS),故答案为:AB=ED(或∠A=∠D或AC∥DF等).13.等腰三角形一腰上的高与另一腰的夹角为50°,那么这个等腰三角形的底角为70°或20°.【分析】根据题意,等腰三角形一腰上的高与另一腰的夹角为50°,分两种情况讨论,①如图一,当一腰上的高在三角形内部时,即∠ABD=50°时,②如图二,当一腰上的高在三角形外部时,即∠ABD=50°时;根据等腰三角形的性质,解答出即可.解:①如图一,∵△ABC是等腰三角形,BD⊥AC,∠ADB=90°,∠ABD=50°,∴在直角△ABD中,∠A=90°﹣50°=40°,∴∠C=∠ABC==70°;②如图二,∵△ABC是等腰三角形,BD⊥AC,∠ADB=90°,∠ABD=50°,∴在直角△ABD中,∠BAD=90°﹣50°=40°,又∵∠BAD=∠ABC+∠C,∠ABC=∠C,∴∠C=∠ABC===20°.故答案为:70°或20°.14.如图,在△ABC中,∠B、∠C的平分线交于O点,过O点作EF∥BC交AB、AC于点E、F.当EF=6,BE=4时,CF的长为2.【分析】利用平行和角平分线得到BE=OE,OF=CF,可得出结论EF=BE+CF,由此即可求得CF的长.解:如图,∵BO平分∠ABC,∴∠ABO=∠CBO;∵EF∥BC,∴∠EOB=∠OBC,∴∠EOB=∠EBO,∴BE=OE;同理可证CF=OF,∴EF=BE+CF,∵EF=6,BE=4,∴OF=EF﹣OE=EF﹣BE=2,∴CF=OF=2,故答案为2.15.如图,OP平分∠AOB,∠AOP=15°,PC∥OA,PC=4,PD⊥OA,垂足为D,则PD=2.【分析】作PE⊥OB于E,根据角平分线的性质可得PE=PD,根据平行线的性质可得∠BCP=∠AOB=30°,由直角三角形中30°的角所对的直角边等于斜边的一半,可求得PE,即可求得PD.解:作PE⊥OB于E,∵∠BOP=∠AOP,PD⊥OA,PE⊥OB,∴PE=PD,∵∠BOP=∠AOP=15°,∴∠AOB=30°,∵PC∥OA,∴∠BCP=∠AOB=30°,在Rt△PCE中,PE=PC=×4=2,∴PD=PE=2,故答案为:2.16.如图,在△ABC中,AB=AC=10,BC=12,AD=8,AD是∠BAC的平分线.若P,Q分别是AD和AC上的动点,则PC+PQ的最小值是9.6.【分析】由等腰三角形的三线合一可得出AD垂直平分BC,过点B作BQ⊥AC于点Q,BQ交AD于点P,则此时PC+PQ取最小值,最小值为BQ的长,在△ABC中,利用面积法可求出BQ的长度,此题得解.解:∵AB=AC,AD是∠BAC的平分线,∴AD垂直平分BC,∴BP=CP.过点B作BQ⊥AC于点Q,BQ交AD于点P,则此时PC+PQ取最小值,最小值为BQ的长,如图所示.∵S△ABC=BC•AD=AC•BQ,∴BQ===9.6.故答案为:9.6.三、解答题(本大题共8小题,共72分)17.已知,在△ABC中.(1)若∠B=∠A+15°,∠C=∠B+15°,求△ABC的各内角度数;(2)若三边长分别为a、b、c,试化简代数式|a+b﹣c|﹣|b﹣c﹣a|.【分析】(1)由∠B=∠A+15°,∠C=∠B+15°,结合∠A+∠B+∠C=180°可求出∠A的度数,再将其代入∠B=∠A+15°,∠C=∠B+15°中可求出∠B,∠C的度数;(2)利用“三角形两边之和大于第三边”可得出|a+b﹣c|=(a+b﹣c),|b﹣c﹣a|=(﹣b+c+a),再将其代入|a+b﹣c|﹣|b﹣c﹣a|中可得出|a+b﹣c|﹣|b﹣c﹣a|=2b﹣2c.解:(1)∵∠B=∠A+15°,∠C=∠B+15°,∠A+∠B+∠C=180°,∴∠A+(∠A+15°)+(∠A+15°+15°)=180°,∴∠A=45°,∴∠B=∠A+15°=45°+15°=60°,∠C=∠B+15°=60°+15°=75°.(2)|a+b﹣c|﹣|b﹣c﹣a|=(a+b﹣c)﹣(﹣b+c+a)=a+b﹣c+b﹣c﹣a=2b﹣2c.18.如图,在△ABC中,AD是BC边上的高,∠B=30°,∠ACB=100°,AE平分∠BAC,求∠EAD的度数.【分析】根据三角形内角和定理求出∠BAC,根据角平分线的定义得到∠BAE=∠CAE=25°,根据垂直的定义、三角形内角和定理计算,得到答案.解:∵∠B=30°,∠ACB=100°,∴∠BAC=50°,∵AE平分∠BAC,∴∠BAE=∠CAE=25°,∴∠AEC=55°,∵AD⊥BC,∴∠D=90°,∴∠EAD=35°.19.如图,在△ABC中,点D为BC上一点,E、F两点分别在边AB、AC上,若BE=CD,BD=CF,∠B=∠C,∠A=50°,求∠EDF的度数.【分析】通过证明△BDE≌△CFD,可得∠BDE=∠CFD,根据∠BDE+∠CDF+∠EDF=180°即可求得∠EDF的值,即可解题.解:在△BDE和△CFD中,∴△BDE≌△CFD(SAS),∴∠BDE=∠CFD,∵∠BDE+∠CDF+∠EDF=180°,∴∠CFD+∠CDF+∠EDF=180°,∵∠CFD+∠CDF+∠C=180°,∴∠EDF=∠C.∵∠B=∠C,∠A=50°,∴∠EDF=∠C=(180°﹣50°)=65°.20.如图,△ABC是等边三角形,D、E分别是BC、AC边上的点,连接AD、BE,且AD、BE相交于点P,∠AEB=∠CDA.(1)求∠BPD的度数.(2)过点B作BQ⊥AD于Q,若PQ=3,PE=1,求BE的长.【分析】(1)根据等边三角形的性质可得,∠ABC=∠C=60°,又根据∠AEB=∠CDA,进而求得∠EBC=∠BAD,即可得出答案;(2)根据题意求得∠PBQ=30°,再根据直角三角形中30°的角的性质求出BP的长度,即可得出答案.解:(1)由△ABC是等边三角形可得,∠ABC=∠C=60°,∵∠ADC=∠ABC+∠BAD,∠AEB=∠C+∠EBC,∠AEB=∠CDA,∴∠BAD=∠EBC,∵∠BPD=∠ABE+∠BAD,∴∠BPD=∠ABE+∠EBC=∠ABC=60°;(2)∵BQ⊥AD于Q,∴∠BQP=90°,∵∠BPD=60°,∴∠PBQ=90°﹣∠BPD=30°,在Rt△BPQ中,∵PQ=3,∠PBQ=30°,∴BP=2PQ=6,又∵PE=1,∴BE=BP+PE=6+1=7.21.如图,已知△ABC三个顶点的坐标分别为A(﹣1,﹣1),B(﹣4,﹣2),C(﹣1,﹣4).(1)点A关于y轴对称的点的坐标是(1,﹣1);(2)画出△ABC关于x轴对称的△A1B1C1分别写出点A1,B1,C1的坐标;(3)求△A1B1C1的面积.【分析】(1)直接利用关于y轴对称点的性质得出答案;(2)直接利用关于x轴对称点的性质得出对应点位置进而得出答案;(3)利用三角形面积求法得出答案.解:(1)点A关于y轴对称的点的坐标是:(1,﹣1),故答案为:(1,﹣1);(2)点A1(﹣1,1),B1(﹣4,2),C1(﹣1,4);(3)△A1B1C1的面积为:×3×3=.22.如图,△ABC中,AC的垂直平分线DE交AC于点E,交∠ABC的平分线于点D,DF⊥BC于点F,连接AD.(1)求证AB+CF=BF;(2)若∠ABC=70°,求∠DAE的度数.【分析】(1)过D作AB的垂线交AB的延长线于点G,连接CD,根据全等三角形的判定和性质解答即可;(2)根据四边形内角和解答即可.【解答】证明:(1)过D作AB的垂线交AB的延长线于点G,连接CD,∵BD平分∠ABC,DG⊥AB,DF⊥BC,∴DG=DF,∵DE垂直平分AC,∴DA=DC,在Rt△ADG和Rt△CDF中,,∴Rt△ADG≌Rt△CDF(HL),∴AG=CF,∵DG⊥AB,DF⊥BC,∴∠BGD=∠BFD=90°,∵BD平分∠ABC,∴∠GBD=∠FBD,在△BDG和△BDF中,,∴△BDG≌△BDF(AAS),∴BG=BF,∴AB+CF=BF;(2)∵四边形BFDG的内角和为360°,∴∠FDG=180°﹣∠ABF=180°﹣70°=110°,由(1)知Rt△ADG≌Rt△CDF,∴∠GDA=∠CDF,∴∠FDG=∠ADC=110°,又∵DA=DC,DE⊥AC,∴∠ADE=∠CDE==55°,∴∠DAE=35°.23.如图,CA=CB,CD=CE,∠ACB=∠DCE=α,AD、BE相交于点H(1)求证:AD=BE.(2)连接CH,求证:CH平分∠AHE.(3)求∠AHE的度数(用含α的式子表示).【分析】(1)由条件根据SAS可证明△ACD≌△BCE,则结论得证;(2)过点C作CM⊥AD于M,CN⊥BE于N,可证明△ACM≌△BCN,可证得CM=CN,利用角平分线的判定可证明结论;(3)由(1)可得∠CAD=∠CBE,再利用三角形内角及外角的性质可求得∠AHE.【解答】(1)证明:∵∠ACB=∠DCE=α,∴∠ACD=∠BCE,在△ACD和△BCE中,∴△ACD≌△BCE(S
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年保险代理合同协议书样本
- 2024年北京地区汽车租用协议样本解析版
- 2024年全球体育赛事赞助合同
- 2024年升级版居民用水协议样本下载
- 二零二四年度物业管理合同(公寓大厦)
- 2024年劳务分包商安全生产职责界定合同版B版
- 2024年度陕西房产证办理委托合同3篇
- 二零二四年度人工智能研发与推广合作协议3篇
- 山西太原2024年度物业管理合同标的说明
- 2024解除房屋买卖合同纠纷诉讼
- 国家开放大学2024年12月《思想道德与法治试卷2-版本1》大作业参考答案
- 下肢静脉曲张硬化治疗
- 《黄金市场》课件
- 《员工职业规划培训》课件
- 《全面预算概论》课件
- 2024年度品牌授权代理终止协议书
- 班组长安全培训资料
- Unit1 lesson 1 Me and my body说课稿2024-2025学年冀教版(2024)初中英语七年级上册
- 2024-2030年中国冶炼钛产业未来发展趋势及投资策略分析报告
- 作文写清楚一件事的起因经过和结果公开课获奖课件省赛课一等奖课件
- 线上主播管理劳动合同(3篇)
评论
0/150
提交评论