江苏省赣榆县海头高级中学2025届高考冲刺押题(最后一卷)数学试卷含解析_第1页
江苏省赣榆县海头高级中学2025届高考冲刺押题(最后一卷)数学试卷含解析_第2页
江苏省赣榆县海头高级中学2025届高考冲刺押题(最后一卷)数学试卷含解析_第3页
江苏省赣榆县海头高级中学2025届高考冲刺押题(最后一卷)数学试卷含解析_第4页
江苏省赣榆县海头高级中学2025届高考冲刺押题(最后一卷)数学试卷含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江苏省赣榆县海头高级中学2025届高考冲刺押题(最后一卷)数学试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.关于函数,有下述三个结论:①函数的一个周期为;②函数在上单调递增;③函数的值域为.其中所有正确结论的编号是()A.①② B.② C.②③ D.③2.已知椭圆的左、右焦点分别为、,过的直线交椭圆于A,B两点,交y轴于点M,若、M是线段AB的三等分点,则椭圆的离心率为()A. B. C. D.3.如图,圆的半径为,,是圆上的定点,,是圆上的动点,点关于直线的对称点为,角的始边为射线,终边为射线,将表示为的函数,则在上的图像大致为()A. B. C. D.4.若非零实数、满足,则下列式子一定正确的是()A. B.C. D.5.已知是虚数单位,若,,则实数()A.或 B.-1或1 C.1 D.6.若P是的充分不必要条件,则p是q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件7.在棱长为a的正方体中,E、F、M分别是AB、AD、的中点,又P、Q分别在线段、上,且,设平面平面,则下列结论中不成立的是()A.平面 B.C.当时,平面 D.当m变化时,直线l的位置不变8.已知与分别为函数与函数的图象上一点,则线段的最小值为()A. B. C. D.69.函数的图像大致为().A. B.C. D.10.抛物线的准线方程是,则实数()A. B. C. D.11.已知不等式组表示的平面区域的面积为9,若点,则的最大值为()A.3 B.6 C.9 D.1212.已知过点且与曲线相切的直线的条数有().A.0 B.1 C.2 D.3二、填空题:本题共4小题,每小题5分,共20分。13.设(其中为自然对数的底数),,若函数恰有4个不同的零点,则实数的取值范围为________.14.在矩形中,,为的中点,将和分别沿,翻折,使点与重合于点.若,则三棱锥的外接球的表面积为_____.15.的展开式中含的系数为__________.(用数字填写答案)16.我国古代数学著作《九章算术》中记载“今有人共买物,人出八,盈三;人出七,不足四.问人数、物价各几何?”设人数、物价分别为、,满足,则_____,_____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数.(1)讨论的单调性;(2)函数,若对于,使得成立,求的取值范围.18.(12分)在平面直角坐标系xOy中,直线l的参数方程为(t为参数),以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,圆C的极坐标方程为.(1)求直线l的普通方程和圆C的直角坐标方程;(2)直线l与圆C交于A,B两点,点P(2,1),求|PA|⋅|PB|的值.19.(12分)新型冠状病毒肺炎疫情发生以来,电子购物平台成为人们的热门选择.为提高市场销售业绩,某公司设计了一套产品促销方案,并在某地区部分营销网点进行试点.运作一年后,对“采用促销”和“没有采用促销”的营销网点各选取了50个,对比上一年度的销售情况,分别统计了它们的年销售总额,并按年销售总额增长的百分点分成5组:,分别统计后制成如图所示的频率分布直方图,并规定年销售总额增长10个百分点及以上的营销网点为“精英店”.(1)请你根据题中信息填充下面的列联表,并判断是否有的把握认为“精英店与采用促销活动有关”;采用促销没有采用促销合计精英店非精英店合计5050100(2)某“精英店”为了创造更大的利润,通过分析上一年度的售价(单位:元)和日销量(单位:件)的一组数据后决定选择作为回归模型进行拟合.具体数据如下表,表中的:①根据上表数据计算的值;②已知该公司成本为10元/件,促销费用平均5元/件,根据所求出的回归模型,分析售价定为多少时日利润可以达到最大.附①:附②:对应一组数据,其回归直线的斜率和截距的最小二乘法估计分别为.20.(12分)已知三棱锥P-ABC(如图一)的平面展开图(如图二)中,四边形ABCD为边长等于的正方形,和均为正三角形,在三棱锥P-ABC中:(1)证明:平面平面ABC;(2)若点M在棱PA上运动,当直线BM与平面PAC所成的角最大时,求直线MA与平面MBC所成角的正弦值.21.(12分)如图所示,已知平面,,为等边三角形,为边上的中点,且.(Ⅰ)求证:面;(Ⅱ)求证:平面平面;(Ⅲ)求该几何体的体积.22.(10分)已知矩阵,且二阶矩阵M满足AMB,求M的特征值及属于各特征值的一个特征向量.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】

①用周期函数的定义验证.②当时,,,再利用单调性判断.③根据平移变换,函数的值域等价于函数的值域,而,当时,再求值域.【详解】因为,故①错误;当时,,所以,所以在上单调递增,故②正确;函数的值域等价于函数的值域,易知,故当时,,故③正确.故选:C.【点睛】本题考查三角函数的性质,还考查推理论证能力以及分类讨论思想,属于中档题.2、D【解析】

根据题意,求得的坐标,根据点在椭圆上,点的坐标满足椭圆方程,即可求得结果.【详解】由已知可知,点为中点,为中点,故可得,故可得;代入椭圆方程可得,解得,不妨取,故可得点的坐标为,则,易知点坐标,将点坐标代入椭圆方程得,所以离心率为,故选:D.【点睛】本题考查椭圆离心率的求解,难点在于根据题意求得点的坐标,属中档题.3、B【解析】

根据图象分析变化过程中在关键位置及部分区域,即可排除错误选项,得到函数图象,即可求解.【详解】由题意,当时,P与A重合,则与B重合,所以,故排除C,D选项;当时,,由图象可知选B.故选:B【点睛】本题主要考查三角函数的图像与性质,正确表示函数的表达式是解题的关键,属于中档题.4、C【解析】

令,则,,将指数式化成对数式得、后,然后取绝对值作差比较可得.【详解】令,则,,,,,因此,.故选:C.【点睛】本题考查了利用作差法比较大小,同时也考查了指数式与对数式的转化,考查推理能力,属于中等题.5、B【解析】

由题意得,,然后求解即可【详解】∵,∴.又∵,∴,∴.【点睛】本题考查复数的运算,属于基础题6、B【解析】

试题分析:通过逆否命题的同真同假,结合充要条件的判断方法判定即可.由p是的充分不必要条件知“若p则”为真,“若则p”为假,根据互为逆否命题的等价性知,“若q则”为真,“若则q”为假,故选B.考点:逻辑命题7、C【解析】

根据线面平行与垂直的判定与性质逐个分析即可.【详解】因为,所以,因为E、F分别是AB、AD的中点,所以,所以,因为面面,所以.选项A、D显然成立;因为,平面,所以平面,因为平面,所以,所以B项成立;易知平面MEF,平面MPQ,而直线与不垂直,所以C项不成立.故选:C【点睛】本题考查直线与平面的位置关系.属于中档题.8、C【解析】

利用导数法和两直线平行性质,将线段的最小值转化成切点到直线距离.【详解】已知与分别为函数与函数的图象上一点,可知抛物线存在某条切线与直线平行,则,设抛物线的切点为,则由可得,,所以切点为,则切点到直线的距离为线段的最小值,则.故选:C.【点睛】本题考查导数的几何意义的应用,以及点到直线的距离公式的应用,考查转化思想和计算能力.9、A【解析】

本题采用排除法:由排除选项D;根据特殊值排除选项C;由,且无限接近于0时,排除选项B;【详解】对于选项D:由题意可得,令函数,则,;即.故选项D排除;对于选项C:因为,故选项C排除;对于选项B:当,且无限接近于0时,接近于,,此时.故选项B排除;故选项:A【点睛】本题考查函数解析式较复杂的图象的判断;利用函数奇偶性、特殊值符号的正负等有关性质进行逐一排除是解题的关键;属于中档题.10、C【解析】

根据准线的方程写出抛物线的标准方程,再对照系数求解即可.【详解】因为准线方程为,所以抛物线方程为,所以,即.故选:C【点睛】本题考查抛物线与准线的方程.属于基础题.11、C【解析】

分析:先画出满足约束条件对应的平面区域,利用平面区域的面积为9求出,然后分析平面区域多边形的各个顶点,即求出边界线的交点坐标,代入目标函数求得最大值.详解:作出不等式组对应的平面区域如图所示:则,所以平面区域的面积,解得,此时,由图可得当过点时,取得最大值9,故选C.点睛:该题考查的是有关线性规划的问题,在求解的过程中,首先需要正确画出约束条件对应的可行域,之后根据目标函数的形式,判断z的几何意义,之后画出一条直线,上下平移,判断哪个点是最优解,从而联立方程组,求得最优解的坐标,代入求值,要明确目标函数的形式大体上有三种:斜率型、截距型、距离型;根据不同的形式,应用相应的方法求解.12、C【解析】

设切点为,则,由于直线经过点,可得切线的斜率,再根据导数的几何意义求出曲线在点处的切线斜率,建立关于的方程,从而可求方程.【详解】若直线与曲线切于点,则,又∵,∴,∴,解得,,∴过点与曲线相切的直线方程为或,故选C.【点睛】本题主要考查了利用导数求曲线上过某点切线方程的斜率,求解曲线的切线的方程,其中解答中熟记利用导数的几何意义求解切线的方程是解答的关键,着重考查了运算与求解能力,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】

求函数,研究函数的单调性和极值,作出函数的图象,设,若函数恰有4个零点,则等价为函数有两个零点,满足或,利用一元二次函数根的分布进行求解即可.【详解】当时,,由得:,解得,由得:,解得,即当时,函数取得极大值,同时也是最大值,(e),当,,当,,作出函数的图象如图,设,由图象知,当或,方程有一个根,当或时,方程有2个根,当时,方程有3个根,则,等价为,当时,,若函数恰有4个零点,则等价为函数有两个零点,满足或,则,即(1)解得:,故答案为:【点睛】本题主要考查函数与方程的应用,利用换元法进行转化一元二次函数根的分布以及.求的导数,研究函数的的单调性和极值是解决本题的关键,属于难题.14、.【解析】

计算外接圆的半径,并假设外接球的半径为R,可得球心在过外接圆圆心且垂直圆面的垂线上,然后根据面,即可得解.【详解】由题意可知,,所以可得面,设外接圆的半径为,由正弦定理可得,即,,设三棱锥外接球的半径,因为外接球的球心为过底面圆心垂直于底面的直线与中截面的交点,则,所以外接球的表面积为.故答案为:.【点睛】本题考查三棱锥的外接球的应用,属于中档题.15、【解析】由题意得,二项式展开式的通项为,令,则,所以得系数为.16、【解析】

利用已知条件,通过求解方程组即可得到结果.【详解】设人数、物价分别为、,满足,解得,.故答案为:;.【点睛】本题考查函数与方程的应用,方程组的求解,考查计算能力,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)当时,在上增;当时,在上减,在上增(2)【解析】

(1)求出导函数,分类讨论确定的正负,确定单调区间;(2)题意说明,利用导数求出的最小值,由(1)可得的最小值,从而得出结论.【详解】解:(1)定义域为当时,即在上增;当时,即得得综上所述,当时,在上增;当时,在上减,在上增(2)由题在上增由(1)当时,在上增,所以此时无最小值;当时,在上减,在上增,即,解得综上【点睛】本题考查用导数求函数的单调区间,考查不等式恒成立问题,解题关键是掌握转化与化归思想,本题恒成立问题转化为,求出两函数的最小值后可得结论.18、(1)直线的普通方程,圆的直角坐标方程:.(2)【解析】

(1)直接利用转换关系的应用,把参数方程极坐标方程和直角坐标方程之间进行转换.(2)将直线的参数方程代入圆的直角坐标方程,利用一元二次方程根和系数关系式即可求解.【详解】(1)直线l的参数方程为(t为参数),转换为直角坐标方程为x+y﹣3=0.圆C的极坐标方程为ρ2﹣4ρcosθ=3,转换为直角坐标方程为x2+y2﹣4x﹣3=0.(2)把直线l的参数方程为(t为参数),代入圆的直角坐标方程x2+y2﹣4x﹣3=0,得到,所以|PA||PB|=|t1t2|=6.【点睛】本题考查参数方程极坐标方程和直角坐标方程之间的转换,一元二次方程根和系数关系式的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题型.19、(1)列联表见解析,有把握;(2)①;②元时【解析】

(1)直接由题意列出列联表,通过计算,可判断精英店与采用促销活动是否有关.(2)①代入表中数据,结合公式求出;②由①中所得的线性回归方程,若售价为,单价利润为,日销售量为,进而可求出日利润,结合导数可求最值.【详解】解:(1)由题意知,采用促销中精英店的数量为,采用促销中非精英店的数量为;没有采用促销中精英店的数量为,没有采用促销中非精英店的数量为,列联表为采用促销没有采用促销合计精英店352055非精英店153045合计5050100因为有的把握认为“精英店与采用促销活动有关”.(2)①由公式可得:所以回归方程为②若售价为,单件利润为,日销售为,故日利润,解得.当时,单调递增;当时,单调递减.故当售价元时,日利润达到最大为元.【点睛】本题考查了独立性检验,考查了线性回归方程的求法,考查了函数最值的求解.在求函数的最值时,常用的方法有:函数图像法、结合函数单调性分析最值、基本不等式法、导数法.其中最常用的还是导数法.20、(1)见解析(2)【解析】

(1)设的中点为,连接.由展开图可知,,.为的中点,则有,根据勾股定理可证得,则平面,即可证得平面平面.(2)由线面成角的定义可知是直线与平面所成的角,且,最大即为最短时,即是的中点建立空间直角坐标系,求出与平面的法向量利用公式即可求得结果.【详解】(1)设AC的中点为O,连接BO,PO.由题意,得,,.在中,,O为AC的中点,,在中,,,,,.,平面,平面ABC,平面PAC,平面平面ABC.(2)由(1)知,,,平面PAC,是直线BM与平面PA

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论