




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
装订线装订线PAGE2第1页,共3页河北环境工程学院
《招贴创意设计》2023-2024学年第一学期期末试卷院(系)_______班级_______学号_______姓名_______题号一二三四总分得分批阅人一、单选题(本大题共30个小题,每小题1分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、计算机视觉中的图像修复是填补图像中的缺失或损坏部分。假设我们有一张老照片,其中部分区域被损坏,需要进行修复。以下哪种图像修复方法能够生成自然、合理的内容,与周围区域融合良好?()A.基于纹理合成的修复方法B.基于插值和填充的修复方法C.基于深度学习的图像修复网络,如ContextEncoderD.基于图像分解和重构的修复方法2、在计算机视觉的目标识别任务中,假设要识别不同种类的水果。以下关于应对类内差异和类间相似性的策略,哪一项是不正确的?()A.增加训练数据的多样性,包括不同角度、大小和成熟度的水果B.提取更具区分性的特征,减少类内差异和类间相似性的影响C.降低模型的复杂度,避免过度拟合类内差异和类间相似性D.忽略类内差异和类间相似性,依靠模型的自动适应能力3、在计算机视觉的立体视觉任务中,通过两个或多个相机获取的图像来计算深度信息。以下哪种立体匹配算法在精度和效率方面可能表现较好?()A.基于区域的匹配算法B.基于特征的匹配算法C.基于深度学习的匹配算法D.以上都是4、计算机视觉中的动作识别用于分析视频中的人体动作。假设要识别一段舞蹈视频中的动作类别。以下关于动作识别方法的描述,哪一项是不准确的?()A.可以基于时空特征提取的方法,捕捉动作在时间和空间上的变化B.深度学习中的循环神经网络(RNN)和长短时记忆网络(LSTM)适用于动作序列的分析C.动作识别只需要关注人体的关节位置,不需要考虑人体的整体形态D.多模态数据融合,如结合音频和视频信息,可以提高动作识别的准确率5、在计算机视觉的图像配准任务中,假设要将两张不同视角拍摄的同一物体的图像进行对齐。以下关于图像配准方法的描述,正确的是:()A.基于特征点的配准方法对图像的旋转、缩放和平移具有不变性,但特征点的提取容易出错B.基于灰度的配准方法计算简单,但对光照变化和噪声敏感C.深度学习中的自监督学习方法在图像配准中无法学习到有效的特征表示D.图像配准的精度只取决于配准算法的选择,与图像的质量和特征无关6、在计算机视觉中,三维重建是从二维图像恢复物体的三维结构。以下关于三维重建的叙述,不正确的是()A.可以通过多视图几何、结构光或深度学习方法进行三维重建B.三维重建在虚拟现实、文物保护和工业设计等领域有着广泛的应用C.三维重建的结果总是精确无误的,能够完全还原物体的真实三维结构D.噪声、遮挡和图像质量等因素会对三维重建的结果产生影响7、计算机视觉在无人驾驶飞行器(UAV)中的应用可以辅助飞行和导航。假设一架UAV需要依靠视觉信息避开障碍物,以下关于UAV计算机视觉应用的描述,正确的是:()A.仅依靠单目视觉就能准确估计障碍物的距离和速度B.视觉信息在UAV飞行中的作用有限,主要依靠其他传感器如GPSC.多目视觉和深度学习算法的结合可以为UAV提供更准确的环境感知和障碍物避让能力D.UAV的飞行速度和姿态对视觉系统的性能没有影响8、在计算机视觉的三维重建任务中,我们需要从多幅二维图像中恢复物体的三维结构。假设我们只有少量的、视角有限的图像,以下哪种重建方法可能面临较大挑战?()A.基于立体视觉的重建方法B.基于运动恢复结构(StructurefromMotion)的方法C.利用激光扫描数据进行重建D.基于模型拟合的重建方法9、在计算机视觉的图像分类任务中,假设数据集存在类别不平衡问题,某些类别的样本数量远远少于其他类别。以下哪种方法可以缓解这种不平衡对分类模型的影响?()A.对少数类进行过采样或对多数类进行欠采样B.只使用多数类的样本进行训练C.不考虑类别不平衡,直接训练模型D.随机选择样本进行训练10、在计算机视觉的图像去雾任务中,假设要去除一张有雾图像中的雾气,恢复清晰的场景。以下关于图像去雾方法的描述,正确的是:()A.基于物理模型的去雾方法需要准确估计雾的浓度和传播参数,否则效果不佳B.基于深度学习的去雾方法能够自动学习雾的特征,但对浓雾的处理能力有限C.图像去雾后,颜色和对比度会发生严重失真,影响视觉效果D.所有的图像去雾方法都能够在各种复杂的雾天条件下取得理想的效果11、在计算机视觉的视觉跟踪与定位任务中,实时跟踪物体并确定其在空间中的位置。假设要在一个室内环境中跟踪一个移动的机器人并确定其位置,以下关于视觉跟踪与定位方法的描述,正确的是:()A.基于标志物的跟踪与定位方法在标志物被遮挡时仍能准确工作B.视觉里程计方法能够独立实现高精度的长期跟踪与定位C.同时使用多个相机进行观测不能提高跟踪与定位的性能D.环境的光照变化和动态障碍物对视觉跟踪与定位的结果影响较小12、计算机视觉中的手势识别用于理解人的手势动作。假设要在一个智能交互系统中实现实时准确的手势识别,以下关于手势识别方法的描述,正确的是:()A.基于传感器的手势识别方法能够精确获取手势的运动信息,但佩戴传感器不方便B.基于视觉的手势识别方法不受环境光照和背景的影响,识别稳定性高C.深度学习中的卷积神经网络在手势识别中无法处理复杂的手势变化和遮挡D.手势识别系统只要能够识别常见的几种手势,就能够满足大多数应用需求13、计算机视觉在智能交通系统中的应用可以优化交通流量和提高安全性。假设要通过计算机视觉监测道路上的车辆拥堵情况。以下关于计算机视觉在智能交通中的描述,哪一项是错误的?()A.可以通过车辆检测和计数来评估道路的拥堵程度B.能够识别车辆的类型和行驶方向,为交通管理提供数据支持C.计算机视觉在智能交通中的应用完全不受恶劣天气和光照条件的影响D.可以与交通信号控制系统联动,实现自适应的交通信号配时14、在计算机视觉的应用中,人脸识别技术受到广泛关注。假设一个人脸识别系统正在进行身份验证,以下关于人脸识别的描述,正确的是:()A.只依靠面部的几何形状信息就能实现准确的人脸识别B.光照变化和面部表情对人脸识别的准确率没有影响C.结合深度学习模型和多模态信息,如红外图像,可以提高人脸识别的性能和可靠性D.人脸识别系统不需要考虑数据的隐私和安全问题15、计算机视觉中的表情识别旨在识别图像或视频中人物的表情。假设要在一个情感分析系统中准确识别表情,以下关于表情识别方法的描述,正确的是:()A.基于几何特征的表情识别方法对表情的细微变化不敏感,识别准确率低B.基于纹理特征的表情识别方法能够很好地捕捉表情的局部特征,但容易受到光照影响C.深度学习中的卷积神经网络在表情识别中能够学习到全局和局部的特征,但对大规模数据集依赖严重D.表情识别系统只适用于正面清晰的人脸表情,对于侧脸和遮挡的表情无法识别16、图像压缩是为了减少图像的数据量,同时保持可接受的视觉质量。假设我们需要在网络上传输大量的图像,以下哪种图像压缩标准能够在保证较高压缩比的同时,提供较好的图像质量?()A.JPEGB.PNGC.GIFD.BMP17、在计算机视觉的图像生成任务中,假设要生成逼真的人脸图像。以下关于生成模型的架构选择,哪一项是需要特别关注的?()A.选择传统的多层感知机(MLP)架构B.采用生成对抗网络(GAN)架构,通过对抗训练生成高质量图像C.运用卷积神经网络(CNN)架构,但不使用池化层D.构建循环神经网络(RNN)架构,处理图像的序列信息18、计算机视觉在自动驾驶领域发挥着重要作用。假设一辆自动驾驶汽车正在道路上行驶,需要识别各种交通标志、车辆和行人。以下关于自动驾驶中计算机视觉的描述,哪一项是不正确的?()A.计算机视觉可以通过摄像头实时获取道路信息,为车辆的决策和控制提供依据B.它能够准确识别不同光照和天气条件下的交通对象,不受任何干扰C.深度学习算法在自动驾驶的计算机视觉中被广泛应用,用于目标检测和语义分割D.计算机视觉需要与其他传感器(如雷达、激光雷达)的数据融合,以提高感知的可靠性19、计算机视觉中的深度估计是确定场景中物体距离相机的远近。假设要为机器人导航提供深度信息,以下关于深度估计方法的精度要求,哪一项是最为关键的?()A.能够区分不同物体的大致距离范围即可B.提供精确到毫米级别的深度信息,确保机器人安全导航C.深度估计的精度对机器人导航影响不大,可以忽略D.精度要求取决于机器人的运动速度,速度越快要求精度越低20、视频分析是计算机视觉的一个重要领域。假设要对一段监控视频中的行为进行分析和理解,以下关于视频分析方法的描述,正确的是:()A.直接将视频中的每一帧图像作为独立的图像进行处理,就能准确分析视频中的行为B.考虑视频的时序信息和帧间的相关性对于理解复杂的行为非常重要C.视频分析只适用于简单的动作识别,对于复杂的多人物交互行为无法处理D.视频的分辨率和帧率对视频分析的结果没有影响21、在一个基于计算机视觉的工业质量检测系统中,需要检测产品表面的微小缺陷,如划痕、凹坑等。由于缺陷的尺寸较小且形态多样,以下哪种图像处理算法可能对缺陷检测最为有效?()A.边缘检测算法B.形态学操作C.阈值分割算法D.霍夫变换22、当进行图像的去雾处理时,假设要去除图像中由于雾气导致的模糊和低对比度。以下哪种方法可能更有效?()A.基于物理模型的去雾方法,估计大气光和透射率B.对图像进行简单的对比度增强C.不进行去雾处理,保留有雾的效果D.随机调整图像的亮度和饱和度23、计算机视觉中的光流估计用于计算图像中像素的运动信息。假设要估计一段视频中物体的运动速度和方向,以下关于光流估计方法的描述,正确的是:()A.传统的基于梯度的光流估计方法在复杂场景中能够准确计算光流B.深度学习中的光流估计网络不需要大量的标注数据进行训练C.光流估计的结果不受图像噪声和模糊的影响D.结合时空信息的深度学习光流估计方法能够提高估计的准确性和鲁棒性24、在计算机视觉中,图像去雾是提高有雾图像质量的技术。以下关于图像去雾的描述,不准确的是()A.图像去雾可以基于物理模型或深度学习方法来实现B.深度学习方法在图像去雾中能够有效地恢复图像的细节和颜色C.图像去雾只对轻度有雾的图像有效,对于浓雾图像效果不佳D.图像去雾可以提高图像的清晰度和可视性,有助于后续的处理和分析25、假设要构建一个能够对书画作品进行真伪鉴定的计算机视觉系统,需要对作品的笔触、线条和风格等特征进行分析。以下哪种技术在书画鉴定中可能具有应用前景?()A.笔迹分析B.风格迁移C.图像风格分析D.以上都是26、在计算机视觉的目标跟踪任务中,假设要跟踪一个在人群中移动的物体。以下关于跟踪算法的选择,哪一项是需要着重考虑的?()A.算法对目标外观变化的适应性B.算法的计算复杂度,越低越好C.算法是否能够处理多个同时移动的目标D.算法在处理静态场景时的性能27、在计算机视觉的图像去噪任务中,去除图像中的噪声。假设要对一张受到严重噪声污染的图像进行去噪处理,以下关于图像去噪方法的描述,正确的是:()A.均值滤波方法能够在去除噪声的同时很好地保留图像的细节B.中值滤波对椒盐噪声的去除效果不佳C.基于深度学习的图像去噪方法可以自适应地学习噪声模式和图像特征D.图像去噪不会引入任何新的失真或模糊28、计算机视觉中的图像超分辨率技术用于提高图像的分辨率。假设要将一张低分辨率的图像恢复成高分辨率图像,以下关于图像超分辨率方法的描述,正确的是:()A.基于插值的图像超分辨率方法能够生成清晰逼真的高分辨率图像B.深度学习中的生成对抗网络(GAN)在图像超分辨率任务中无法发挥作用C.图像超分辨率的效果不受原始低分辨率图像的质量和内容的限制D.结合先验知识和深度学习的方法可以改善图像超分辨率的效果29、计算机视觉在文物保护和修复中的应用逐渐增多。假设要对一幅古老的绘画进行数字化修复和增强,以下关于颜色恢复的挑战,哪一项是最为显著的?()A.由于年代久远,原画作的颜色信息缺失严重B.不同区域的颜色褪色程度不一致,难以统一恢复C.缺乏对原画作创作时所用颜料的了解,难以准确还原颜色D.修复过程中可能引入新的颜色偏差,影响修复效果30、计算机视觉在智能零售中的应用可以改善购物体验和提高运营效率。假设一个超市需要通过计算机视觉实现自动结账和库存管理。以下关于计算机视觉在智能零售中的描述,哪一项是不准确的?()A.可以通过商品识别技术自动识别顾客购买的商品,实现快速结账B.能够实时监测货架上商品的库存水平,及时提醒补货C.计算机视觉系统能够准确识别所有商品的包装和标签,不受商品摆放方式和遮挡的影响D.可以分析顾客在店内的行为和偏好,为营销策略提供数据支持二、应用题(本大题共5个小题,共25分)1、(本题5分)基于计算机视觉的智能安防监控系统,实时检测异常人员和行为。2、(本题5分)开发一个可以识别不同种类鲸豚的计算机视觉应用。3、(本题5分)基于深度学习,实现对乒乓球比赛中擦边球的检测。4、(本题5分)基于深度学习的图像目标检测技术,检测视频中的多个目标类别和位置。5、(本题5分)运用深度学习模型,对古
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论