广东省佛山市实验中学2025届高三压轴卷数学试卷含解析_第1页
广东省佛山市实验中学2025届高三压轴卷数学试卷含解析_第2页
广东省佛山市实验中学2025届高三压轴卷数学试卷含解析_第3页
广东省佛山市实验中学2025届高三压轴卷数学试卷含解析_第4页
广东省佛山市实验中学2025届高三压轴卷数学试卷含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

广东省佛山市实验中学2025届高三压轴卷数学试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.函数的图象大致是()A. B.C. D.2.已知在中,角的对边分别为,若函数存在极值,则角的取值范围是()A. B. C. D.3.如图,在中,,是上的一点,若,则实数的值为()A. B. C. D.4.若执行如图所示的程序框图,则输出的值是()A. B. C. D.45.已知,,,,则()A. B. C. D.6.点是单位圆上不同的三点,线段与线段交于圆内一点M,若,则的最小值为()A. B. C. D.7.()A. B. C. D.8.古希腊数学家毕达哥拉斯在公元前六世纪发现了第一、二个“完全数”6和28,进一步研究发现后续三个“完全数”分别为496,8128,33550336,现将这五个“完全数”随机分为两组,一组2个,另一组3个,则6和28恰好在同一组的概率为A. B. C. D.9.等差数列的前项和为,若,,则数列的公差为()A.-2 B.2 C.4 D.710.设全集U=R,集合,则()A.{x|-1<x<4} B.{x|-4<x<1} C.{x|-1≤x≤4} D.{x|-4≤x≤1}11.二项式的展开式中,常数项为()A. B.80 C. D.16012.已知定义在上的奇函数满足:(其中),且在区间上是减函数,令,,,则,,的大小关系(用不等号连接)为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知,,,则的最小值是__.14.已知数列的前项满足,则______.15.已知向量=(1,2),=(-3,1),则=______.16.若实数x,y满足约束条件,则的最大值为________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)改革开放40年,我国经济取得飞速发展,城市汽车保有量在不断增加,人们的交通安全意识也需要不断加强.为了解某城市不同性别驾驶员的交通安全意识,某小组利用假期进行一次全市驾驶员交通安全意识调查.随机抽取男女驾驶员各50人,进行问卷测评,所得分数的频率分布直方图如图所示.规定得分在80分以上为交通安全意识强.安全意识强安全意识不强合计男性女性合计(Ⅰ)求的值,并估计该城市驾驶员交通安全意识强的概率;(Ⅱ)已知交通安全意识强的样本中男女比例为4:1,完成2×2列联表,并判断有多大把握认为交通安全意识与性别有关;(Ⅲ)在(Ⅱ)的条件下,从交通安全意识强的驾驶员中随机抽取2人,求抽到的女性人数的分布列及期望.附:,其中0.0100.0050.0016.6357.87910.82818.(12分)在直角坐标系中,曲线的标准方程为.以原点为极点,轴的非负半轴为极轴建立极坐标系,直线的极坐标方程为.(1)求直线的直角坐标方程;(2)若点在曲线上,点在直线上,求的最小值.19.(12分)如图,在长方体中,,为的中点,为的中点,为线段上一点,且满足,为的中点.(1)求证:平面;(2)求二面角的余弦值.20.(12分)已知函数,其中为实常数.(1)若存在,使得在区间内单调递减,求的取值范围;(2)当时,设直线与函数的图象相交于不同的两点,,证明:.21.(12分)在平面直角坐标系xOy中,直线l的参数方程为(t为参数),以坐标原点为极点,x轴正半轴为极轴,建立极坐标系,已知曲线C的极坐标方程为.(1)求直线l的普通方程与曲线C的直角坐标方程;(2)设点,直线l与曲线C交于不同的两点A、B,求的值.22.(10分)已知函数.(1)求不等式的解集;(2)若不等式对恒成立,求实数的取值范围.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】

根据复合函数的单调性,同增异减以及采用排除法,可得结果.【详解】当时,,由在递增,所以在递增又是增函数,所以在递增,故排除B、C当时,若,则所以在递减,而是增函数所以在递减,所以A正确,D错误故选:A【点睛】本题考查具体函数的大致图象的判断,关键在于对复合函数单调性的理解,记住常用的结论:增+增=增,增-减=增,减+减=减,复合函数单调性同增异减,属中档题.2、C【解析】

求出导函数,由有不等的两实根,即可得不等关系,然后由余弦定理可及余弦函数性质可得结论.【详解】,.若存在极值,则,又.又.故选:C.【点睛】本题考查导数与极值,考查余弦定理.掌握极值存在的条件是解题关键.3、B【解析】

变形为,由得,转化在中,利用三点共线可得.【详解】解:依题:,又三点共线,,解得.故选:.【点睛】本题考查平面向量基本定理及用向量共线定理求参数.思路是(1)先选择一组基底,并运用该基底将条件和结论表示成向量的形式,再通过向量的运算来解决.利用向量共线定理及向量相等的条件列方程(组)求参数的值.(2)直线的向量式参数方程:三点共线⇔(为平面内任一点,)4、D【解析】

模拟程序运行,观察变量值的变化,得出的变化以4为周期出现,由此可得结论.【详解】;如此循环下去,当时,,此时不满足,循环结束,输出的值是4.故选:D.【点睛】本题考查程序框图,考查循环结构.解题时模拟程序运行,观察变量值的变化,确定程序功能,可得结论.5、D【解析】

令,求,利用导数判断函数为单调递增,从而可得,设,利用导数证出为单调递减函数,从而证出,即可得到答案.【详解】时,令,求导,,故单调递增:∴,当,设,,又,,即,故.故选:D【点睛】本题考查了作差法比较大小,考查了构造函数法,利用导数判断式子的大小,属于中档题.6、D【解析】

由题意得,再利用基本不等式即可求解.【详解】将平方得,(当且仅当时等号成立),,的最小值为,故选:D.【点睛】本题主要考查平面向量数量积的应用,考查基本不等式的应用,属于中档题.7、B【解析】

利用复数代数形式的乘除运算化简得答案.【详解】.故选B.【点睛】本题考查复数代数形式的乘除运算,考查了复数的基本概念,是基础题.8、B【解析】

推导出基本事件总数,6和28恰好在同一组包含的基本事件个数,由此能求出6和28恰好在同一组的概率.【详解】解:将五个“完全数”6,28,496,8128,33550336,随机分为两组,一组2个,另一组3个,基本事件总数,6和28恰好在同一组包含的基本事件个数,∴6和28恰好在同一组的概率.故选:B.【点睛】本题考查概率的求法,考查古典概型、排列组合等基础知识,考查运算求解能力,是基础题.9、B【解析】

在等差数列中由等差数列公式与下标和的性质求得,再由等差数列通项公式求得公差.【详解】在等差数列的前项和为,则则故选:B【点睛】本题考查等差数列中求由已知关系求公差,属于基础题.10、C【解析】

解一元二次不等式求得集合,由此求得【详解】由,解得或.因为或,所以.故选:C【点睛】本小题主要考查一元二次不等式的解法,考查集合补集的概念和运算,属于基础题.11、A【解析】

求出二项式的展开式的通式,再令的次数为零,可得结果.【详解】解:二项式展开式的通式为,令,解得,则常数项为.故选:A.【点睛】本题考查二项式定理指定项的求解,关键是熟练应用二项展开式的通式,是基础题.12、A【解析】因为,所以,即周期为4,因为为奇函数,所以可作一个周期[-2e,2e]示意图,如图在(0,1)单调递增,因为,因此,选A.点睛:函数对称性代数表示(1)函数为奇函数,函数为偶函数(定义域关于原点对称);(2)函数关于点对称,函数关于直线对称,(3)函数周期为T,则二、填空题:本题共4小题,每小题5分,共20分。13、.【解析】

因为,展开后利用基本不等式,即可得到本题答案.【详解】由,得,所以,当且仅当,取等号.故答案为:【点睛】本题主要考查利用基本不等式求最值,考查学生的转化能力和运算求解能力.14、【解析】

由已知写出用代替的等式,两式相减后可得结论,同时要注意的求解方法.【详解】∵①,∴时,②,①-②得,∴,又,∴().故答案为:.【点睛】本题考查求数列通项公式,由已知条件.类比已知求的解题方法求解.15、-6【解析】

由可求,然后根据向量数量积的坐标表示可求.【详解】∵=(1,2),=(-3,1),∴=(-4,-1),则=1×(-4)+2×(-1)=-6故答案为-6【点睛】本题主要考查了向量数量积的坐标表示,属于基础试题.16、3【解析】

作出可行域,可得当直线经过点时,取得最大值,求解即可.【详解】作出可行域(如下图阴影部分),联立,可求得点,当直线经过点时,.故答案为:3.【点睛】本题考查线性规划,考查数形结合的数学思想,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(Ⅰ).0.2(Ⅱ)见解析,有的把握认为交通安全意识与性别有关(Ⅲ)见解析,【解析】

(Ⅰ)直接根据频率和为1计算得到答案.(Ⅱ)完善列联表,计算,对比临界值表得到答案.(Ⅲ)的取值为,计算概率得到分布列,计算数学期望得到答案.【详解】(Ⅰ),解得.所以该城市驾驶员交通安全意识强的概率.(Ⅱ)安全意识强安全意识不强合计男性163450女性44650合计2080100,所以有的把握认为交通安全意识与性别有关(Ⅲ)的取值为所以的分布列为期望.【点睛】本题考查了独立性检验,分布列,数学期望,意在考查学生的计算能力和综合应用能力.18、(1)(2)【解析】

(1)直接利用极坐标公式计算得到答案(2)设,,根据三角函数的有界性得到答案.【详解】(1)因为,所以,因为所以直线的直角坐标方程为.(2)由题意可设,则点到直线的距离.因为,所以,因为,故的最小值为.【点睛】本题考查了极坐标方程,参数方程,意在考查学生的计算能力和转化能力.19、(1)证明见解析(2)【解析】

(1)解法一:作的中点,连接,.利用三角形的中位线证得,利用梯形中位线证得,由此证得平面平面,进而证得平面.解法二:建立空间直角坐标系,通过证明直线的方向向量和平面的法向量垂直,证得平面.(2)利用平面和平面法向量,计算出二面角的余弦值.【详解】(1)法一:作的中点,连接,.又为的中点,∴为的中位线,∴,又为的中点,∴为梯形的中位线,∴,在平面中,,在平面中,,∴平面平面,又平面,∴平面.另解:(法二)∵在长方体中,,,两两互相垂直,建立空间直角坐标系如图所示,则,,,,,,,,,,,.(1)设平面的一个法向量为,则,令,则,.∴,又,∵,,又平面,平面.(2)设平面的一个法向量为,则,令,则,.∴.同理可算得平面的一个法向量为∴,又由图可知二面角的平面角为一个钝角,故二面角的余弦值为.【点睛】本小题考查线面的位置关系,空间向量与线面角,二面角等基础知识,考查空间想象能力,推理论证能力,运算求解能力,数形结合思想,化归与转化思想.20、(1);(2)见解析.【解析】

(1)将所求问题转化为在上有解,进一步转化为函数最值问题;(2)将所证不等式转化为,进一步转化为,然后再通过构造加以证明即可.【详解】(1),根据题意,在内存在单调减区间,则不等式在上有解,由得,设,则,当且仅当时,等号成立,所以当时,,所以存在,使得成立,所以的取值范围为。(2)当时,,则,从而所证不等式转化为,不妨设,则不等式转化为,即,即,令,则不等式转化为,因为,则,从而不等式化为,设,则,所以在上单调递增,所以即不等式成立,故原不等式成立.【点睛】本题考查了利用导数研究函数单调性、利用导数证明不等式,这里要强调一点,在证明不等式时,通常是构造函数,将问题转化为函数的极值或最值来处理,本题是一道有高度的压轴解答题.21、(1),(2)【解析】

(1)利用极坐标与直角坐标的互化公式即可把曲线的极坐标方程化为直角坐标方程,利用消去参数即可得到直线的直角坐标方程;(2)由于在直线上,写出直线的标准参数方程参数方程,代入曲线的方程利用参数的几何意义即可得出求解即可.【详解】(1)直线的普通方程为,即,根据极坐标与直角坐标之间的相互转化,,,而,则,即,故直线l的普通方程为,曲线C的直角坐标方程(2)点在直线l上,且直线的倾斜角为,可设直线的参数方程为:(t为参数),代入到曲线C的方程得

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论