版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
黑龙江省虎林市东方红林业局中学2023-2024学年高三仿真(三)数学试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知锐角满足则()A. B. C. D.2.设i为虚数单位,若复数,则复数z等于()A. B. C. D.03.若,则“”的一个充分不必要条件是A. B.C.且 D.或4.已知双曲线:(,)的焦距为.点为双曲线的右顶点,若点到双曲线的渐近线的距离为,则双曲线的离心率是()A. B. C.2 D.35.设、是两条不同的直线,、是两个不同的平面,则的一个充分条件是()A.且 B.且 C.且 D.且6.盒中装有形状、大小完全相同的5张“刮刮卡”,其中只有2张“刮刮卡”有奖,现甲从盒中随机取出2张,则至少有一张有奖的概率为()A. B. C. D.7.已知奇函数是上的减函数,若满足不等式组,则的最小值为()A.-4 B.-2 C.0 D.48.甲、乙、丙、丁四位同学高考之后计划去三个不同社区进行帮扶活动,每人只能去一个社区,每个社区至少一人.其中甲必须去社区,乙不去社区,则不同的安排方法种数为()A.8 B.7 C.6 D.59.如图所示,已知某几何体的三视图及其尺寸(单位:),则该几何体的表面积为()A. B.C. D.10.已知函数,,且在上是单调函数,则下列说法正确的是()A. B.C.函数在上单调递减 D.函数的图像关于点对称11.已知函数,,若存在实数,使成立,则正数的取值范围为()A. B. C. D.12.某圆柱的高为2,底面周长为16,其三视图如图所示,圆柱表面上的点在正视图上的对应点为,圆柱表面上的点在左视图上的对应点为,则在此圆柱侧面上,从到的路径中,最短路径的长度为()A. B. C. D.2二、填空题:本题共4小题,每小题5分,共20分。13.若函数恒成立,则实数的取值范围是_____.14.给出以下式子:①tan25°+tan35°tan25°tan35°;②2(sin35°cos25°+cos35°cos65°);③其中,结果为的式子的序号是_____.15.两光滑的曲线相切,那么它们在公共点处的切线方向相同.如图所示,一列圆(an>0,rn>0,n=1,2…)逐个外切,且均与曲线y=x2相切,若r1=1,则a1=___,rn=______16.春节期间新型冠状病毒肺炎疫情在湖北爆发,为了打赢疫情防控阻击战,我省某医院选派2名医生,6名护士到湖北、两地参加疫情防控工作,每地一名医生,3名护士,其中甲乙两名护士不到同一地,共有__________种选派方法.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在平面直角坐标系xOy中,已知椭圆C:(a>b>0)的离心率为.且经过点(1,),A,B分别为椭圆C的左、右顶点,过左焦点F的直线l交椭圆C于D,E两点(其中D在x轴上方).(1)求椭圆C的标准方程;(2)若△AEF与△BDF的面积之比为1:7,求直线l的方程.18.(12分)如图,已知椭圆经过点,且离心率,过右焦点且不与坐标轴垂直的直线与椭圆相交于两点.(1)求椭圆的标准方程;(2)设椭圆的右顶点为,线段的中点为,记直线的斜率分别为,求证:为定值.19.(12分)在某社区举行的2020迎春晚会上,张明和王慧夫妻俩参加该社区的“夫妻蒙眼击鼓”游戏,每轮游戏中张明和王慧各蒙眼击鼓一次,每个人击中鼓则得积分100分,没有击中鼓则扣积分50分,最终积分以家庭为单位计分.已知张明每次击中鼓的概率为,王慧每次击中鼓的概率为;每轮游戏中张明和王慧击中与否互不影响,假设张明和王慧他们家庭参加两轮蒙眼击鼓游戏.(1)若家庭最终积分超过200分时,这个家庭就可以领取一台全自动洗衣机,问张明和王慧他们家庭可以领取一台全自动洗衣机的概率是多少?(2)张明和王慧他们家庭两轮游戏得积分之和的分布列和数学期望.20.(12分)已知,且的解集为.(1)求实数,的值;(2)若的图像与直线及围成的四边形的面积不小于14,求实数取值范围.21.(12分)2019年是五四运动100周年.五四运动以来的100年,是中国青年一代又一代接续奋斗、凯歌前行的100年,是中口青年用青春之我创造青春之中国、青春之民族的100年.为继承和发扬五四精神在青年节到来之际,学校组织“五四运动100周年”知识竞赛,竞赛的一个环节由10道题目组成,其中6道A类题、4道B类题,参赛者需从10道题目中随机抽取3道作答,现有甲同学参加该环节的比赛.(1)求甲同学至少抽到2道B类题的概率;(2)若甲同学答对每道A类题的概率都是,答对每道B类题的概率都是,且各题答对与否相互独立.现已知甲同学恰好抽中2道A类题和1道B类题,用X表示甲同学答对题目的个数,求随机变量X的分布列和数学期望.22.(10分)已知函数,其中为自然对数的底数.(1)若函数在区间上是单调函数,试求的取值范围;(2)若函数在区间上恰有3个零点,且,求的取值范围.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】
利用代入计算即可.【详解】由已知,,因为锐角,所以,,即.故选:C.【点睛】本题考查二倍角的正弦、余弦公式的应用,考查学生的运算能力,是一道基础题.2、B【解析】
根据复数除法的运算法则,即可求解.【详解】.故选:B.【点睛】本题考查复数的代数运算,属于基础题.3、C【解析】,∴,当且仅当时取等号.故“且”是“”的充分不必要条件.选C.4、A【解析】
由点到直线距离公式建立的等式,变形后可求得离心率.【详解】由题意,一条渐近线方程为,即,∴,,即,,.故选:A.【点睛】本题考查求双曲线的离心率,掌握渐近线方程与点到直线距离公式是解题基础.5、B【解析】由且可得,故选B.6、C【解析】
先计算出总的基本事件的个数,再计算出两张都没获奖的个数,根据古典概型的概率,求出两张都没有奖的概率,由对立事件的概率关系,即可求解.【详解】从5张“刮刮卡”中随机取出2张,共有种情况,2张均没有奖的情况有(种),故所求概率为.故选:C.【点睛】本题考查古典概型的概率、对立事件的概率关系,意在考查数学建模、数学计算能力,属于基础题.7、B【解析】
根据函数的奇偶性和单调性得到可行域,画出可行域和目标函数,根据目标函数的几何意义平移得到答案.【详解】奇函数是上的减函数,则,且,画出可行域和目标函数,,即,表示直线与轴截距的相反数,根据平移得到:当直线过点,即时,有最小值为.故选:.【点睛】本题考查了函数的单调性和奇偶性,线性规划问题,意在考查学生的综合应用能力,画出图像是解题的关键.8、B【解析】根据题意满足条件的安排为:A(甲,乙)B(丙)C(丁);A(甲,乙)B(丁)C(丙);A(甲,丙)B(丁)C(乙);A(甲,丁)B(丙)C(乙);A(甲)B(丙,丁)C(乙);A(甲)B(丁)C(乙,丙);A(甲)B(丙)C(丁,乙);共7种,选B.9、C【解析】
由三视图知,该几何体是一个圆锥,其母线长是5,底面直径是6,据此可计算出答案.【详解】由三视图知,该几何体是一个圆锥,其母线长是5,底面直径是6,该几何体的表面积.故选:C【点睛】本题主要考查了三视图的知识,几何体的表面积的计算.由三视图正确恢复几何体是解题的关键.10、B【解析】
根据函数,在上是单调函数,确定,然后一一验证,A.若,则,由,得,但.B.由,,确定,再求解验证.C.利用整体法根据正弦函数的单调性判断.D.计算是否为0.【详解】因为函数,在上是单调函数,所以,即,所以,若,则,又因为,即,解得,而,故A错误.由,不妨令,得由,得或当时,,不合题意.当时,,此时所以,故B正确.因为,函数,在上是单调递增,故C错误.,故D错误.故选:B【点睛】本题主要考查三角函数的性质及其应用,还考查了运算求解的能力,属于较难的题.11、A【解析】
根据实数满足的等量关系,代入后将方程变形,构造函数,并由导函数求得的最大值;由基本不等式可求得的最小值,结合存在性问题的求法,即可求得正数的取值范围.【详解】函数,,由题意得,即,令,∴,∴在上单调递增,在上单调递减,∴,而,当且仅当,即当时,等号成立,∴,∴.故选:A.【点睛】本题考查了导数在求函数最值中的应用,由基本不等式求函数的最值,存在性成立问题的解法,属于中档题.12、B【解析】
首先根据题中所给的三视图,得到点M和点N在圆柱上所处的位置,将圆柱的侧面展开图平铺,点M、N在其四分之一的矩形的对角线的端点处,根据平面上两点间直线段最短,利用勾股定理,求得结果.【详解】根据圆柱的三视图以及其本身的特征,将圆柱的侧面展开图平铺,可以确定点M和点N分别在以圆柱的高为长方形的宽,圆柱底面圆周长的四分之一为长的长方形的对角线的端点处,所以所求的最短路径的长度为,故选B.点睛:该题考查的是有关几何体的表面上两点之间的最短距离的求解问题,在解题的过程中,需要明确两个点在几何体上所处的位置,再利用平面上两点间直线段最短,所以处理方法就是将面切开平铺,利用平面图形的相关特征求得结果.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
若函数恒成立,即,求导得,在三种情况下,分别讨论函数单调性,求出每种情况时的,解关于的不等式,再取并集,即得。【详解】由题意得,只要即可,,当时,令解得,令,解得,单调递减,令,解得,单调递增,故在时,有最小值,,若恒成立,则,解得;当时,恒成立;当时,,单调递增,,不合题意,舍去.综上,实数的取值范围是.故答案为:【点睛】本题考查恒成立条件下,求参数的取值范围,是常考题型。14、①②③【解析】
由已知分别结合和差角的正切及正弦余弦公式进行化简即可求解.【详解】①∵tan60°=tan(25°+35°),tan25°+tan35°tan25°tan35°;tan25°tan35°,,②2(sin35°cos25°+cos35°cos65°)=2(sin35°cos25°+cos35°sin25°),=2sin60°;③tan(45°+15°)=tan60°;故答案为:①②③【点睛】本题主要考查了两角和与差的三角公式在三角化简求值中的应用,属于中档试题.15、【解析】
第一空:将圆与联立,利用计算即可;第二空:找到两外切的圆的圆心与半径的关系,再将与联立,得到,与结合可得为等差数列,进而可得.【详解】当r1=1时,圆,与联立消去得,则,解得;由图可知当时,①,将与联立消去得,则,整理得,代入①得,整理得,则.故答案为:;.【点睛】本题是抛物线与圆的关系背景下的数列题,关键是找到圆心和半径的关系,建立递推式,由递推式求通项公式,综合性较强,是一道难度较大的题目.16、24【解析】
先求出每地一名医生,3名护士的选派方法的种数,再减去甲乙两名护士到同一地的种数即可.【详解】解:每地一名医生,3名护士的选派方法的种数有,若甲乙两名护士到同一地的种数有,则甲乙两名护士不到同一地的种数有.故答案为:.【点睛】本题考查利用间接法求排列组合问题,正难则反,是基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2).【解析】
(1)利用离心率和椭圆经过的点建立方程组,求解即可.(2)把面积之比转化为纵坐标之间的关系,联立方程结合韦达定理可求.【详解】解:(1)设焦距为2c,由题意知:;解得,所以椭圆的方程为.(2)由(1)知:F(﹣1,0),设l:,D(,),E(,),<0<①,,,②;③;由①②得:,,代入③得:,又,故,因此,直线l的方程为.【点睛】本题主要考查椭圆方程的求解及椭圆中的面积问题,椭圆方程一般利用待定系数法,建立方程组进行求解,面积问题的合理转化是求解的关键,侧重考查数学运算的核心素养.18、(1);(2)详见解析.【解析】
(1)由椭圆离心率、系数关系和已知点坐标构建方程组,求得,代入标准方程中即可;(2)依题意,直线的斜率存在,且不为0,设其为,则直线的方程为,设,,通过联立直线方程与椭圆方程化简整理和中点的坐标表示用含k的表达式表示,,进而表示;由韦达定理表示根与系数的关系进而表示用含k的表达式表示,最后做比即得证.【详解】(1)设椭圆的焦距为,则,即,所以.依题意,,即,解得,所以,.所以椭圆的标准方程为.(2)证明:依题意,直线的斜率存在,且不为0,设其为,则直线的方程为,设,.与椭圆联立整理得,故所以,,所以.又,所以为定值,得证.【点睛】本题考查由离心率求椭圆的标准方程,还考查了椭圆中的定值问题,属于较难题.19、(1)(2)详见解析【解析】
(1)要积分超过分,则需两人共击中次,或者击中次,由此利用相互独立事件概率计算公式,计算出所求概率.(2)求得的所有可能取值,根据相互独立事件概率计算公式,计算出分布列并求得数学期望.【详解】(1)由题意,当家庭最终积分超过200分时,这个家庭就可以领取一台全自动洗衣机,所以要想领取一台全自动洗衣机,则需要这个家庭夫妻俩在两轮游戏中至少击中三次鼓.设事件为“张明第次击中”,事件为“王慧第次击中”,,由事件的独立性和互斥性可得(张明和王慧家庭至少击中三次鼓),所以张明和王慧他们家庭可以领取一台全自动洗衣机的概率是.(2)的所有可能的取值为-200,-50,100,250,400.,,,,.∴的分布列为-200-50100250400∴(分)【点睛】本小题考查概率,分布列,数学期望等概率与统计的基础知识;考查运算求解能力,推理论证能力,数据处理,应用意识.20、(1),;(2)【解析】
(1)解绝对值不等式得,根据不等式的解集为列出方程组,解出即可;(2)求出的图像与直线及交点的坐标,通过分割法将四边形的面积分为两个三角形,列出不等式,解不等式即可.【详解】(1)由得:,,即,解得,.(2)的图像与直线及围成的四边形,,,,.过点向引垂线,垂足为,则.化简得:,(舍)或.故的取值范围为.【点睛】本题主要考查了绝对值不等式的求法,以及绝对值不等式在几何中的应用,属于中档题.21、(1);(2)分布列见解析,期望为.【解析】
(1)甲同学
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 企业借款合同范本
- 机械设备租赁合同协议书
- 深圳市劳动合同经典版
- 《工地建设》课件
- 2024版加工承揽合同工作内容描述与质量要求
- 外墙抹灰承包合同完整版
- 《高效执行力培训》课件
- 二零二四年度委托创作合同2篇
- 2024版浮雕安装维护合同3篇
- 竞业保密限制协议
- 常用材料物性一览表
- 人教-高一英语必修三-Unit4-听说课-名师教学设计
- 交通银行交银金融科技有限公司校园2023年招聘30人笔试历年难、易错考点试题含答案附详解
- 记叙文写作教学公开课一等奖市赛课获奖课件
- 2.PaleoScan详细操作流程
- 国土空间生态修复规划山水林田湖草
- 矿山开采与土地复垦
- 中国现当代文学知到章节答案智慧树2023年哈尔滨学院
- 毒力回归方程 EXCEL在毒力回归计算中的应用
- 语言学教程(英文版)胡壮麟版
- 猫病诊疗基础-猫的保定(猫病防治技术)
评论
0/150
提交评论