黑龙江省哈尔滨市名校2024届高三分班考试数学试题_第1页
黑龙江省哈尔滨市名校2024届高三分班考试数学试题_第2页
黑龙江省哈尔滨市名校2024届高三分班考试数学试题_第3页
黑龙江省哈尔滨市名校2024届高三分班考试数学试题_第4页
黑龙江省哈尔滨市名校2024届高三分班考试数学试题_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

黑龙江省哈尔滨市名校2024届高三分班考试数学试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.一个圆锥的底面和一个半球底面完全重合,如果圆锥的表面积与半球的表面积相等,那么这个圆锥轴截面底角的大小是()A. B. C. D.2.若的展开式中的系数之和为,则实数的值为()A. B. C. D.13.已知等式成立,则()A.0 B.5 C.7 D.134.已知集合,则=A. B. C. D.5.记为等差数列的前项和.若,,则()A.5 B.3 C.-12 D.-136.已知命题,且是的必要不充分条件,则实数的取值范围为()A. B. C. D.7.设是虚数单位,若复数,则()A. B. C. D.8.已知等差数列的公差为,前项和为,,,为某三角形的三边长,且该三角形有一个内角为,若对任意的恒成立,则实数().A.6 B.5 C.4 D.39.已知实数满足不等式组,则的最小值为()A. B. C. D.10.“完全数”是一些特殊的自然数,它所有的真因子(即除了自身以外的约数)的和恰好等于它本身.古希腊数学家毕达哥拉斯公元前六世纪发现了第一、二个“完全数”6和28,进一步研究发现后续三个完全数”分别为496,8128,33550336,现将这五个“完全数”随机分为两组,一组2个,另一组3个,则6和28不在同一组的概率为()A. B. C. D.11.下列函数中,图象关于轴对称的为()A. B.,C. D.12.如图是正方体截去一个四棱锥后的得到的几何体的三视图,则该几何体的体积是()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.若曲线(其中常数)在点处的切线的斜率为1,则________.14.能说明“若对于任意的都成立,则在上是减函数”为假命题的一个函数是________.15.若,且,则的最小值是______.16.设直线过双曲线的一个焦点,且与的一条对称轴垂直,与交于两点,为的实轴长的2倍,则双曲线的离心率为.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数.(1)若曲线的切线方程为,求实数的值;(2)若函数在区间上有两个零点,求实数的取值范围.18.(12分)网络看病就是国内或者国外的单个人、多个人或者单位通过国际互联网或者其他局域网对自我、他人或者某种生物的生理疾病或者机器故障进行查找询问、诊断治疗、检查修复的一种新兴的看病方式.因此,实地看病与网络看病便成为现在人们的两种看病方式,最近某信息机构调研了患者对网络看病,实地看病的满意程度,在每种看病方式的患者中各随机抽取15名,将他们分成两组,每组15人,分别对网络看病,实地看病两种方式进行满意度测评,根据患者的评分(满分100分)绘制了如图所示的茎叶图:(1)根据茎叶图判断患者对于网络看病、实地看病那种方式的满意度更高?并说明理由;(2)若将大于等于80分视为“满意”,根据茎叶图填写下面的列联表:满意不满意总计网络看病实地看病总计并根据列联表判断能否有的把握认为患者看病满意度与看病方式有关?(3)从网络看病的评价“满意”的人中随机抽取2人,求这2人平分都低于90分的概率.附,其中.0.150.100.050.0250.0100.0050.0012.0722.7063.8415.0246.6357.87910.82819.(12分)已知函数f(x)=|x-2|-|x+1|.(Ⅰ)解不等式f(x)>1;(Ⅱ)当x>0时,若函数g(x)(a>0)的最小值恒大于f(x),求实数a的取值范围.20.(12分)近几年一种新奇水果深受广大消费者的喜爱,一位农户发挥聪明才智,把这种露天种植的新奇水果搬到了大棚里,收到了很好的经济效益.根据资料显示,产出的新奇水果的箱数x(单位:十箱)与成本y(单位:千元)的关系如下:x13412y51.522.58y与x可用回归方程(其中,为常数)进行模拟.(Ⅰ)若该农户产出的该新奇水果的价格为150元/箱,试预测该新奇水果100箱的利润是多少元.|.(Ⅱ)据统计,10月份的连续11天中该农户每天为甲地配送的该新奇水果的箱数的频率分布直方图如图所示.(i)若从箱数在内的天数中随机抽取2天,估计恰有1天的水果箱数在内的概率;(ⅱ)求这11天该农户每天为甲地配送的该新奇水果的箱数的平均值.(每组用该组区间的中点值作代表)参考数据与公式:设,则0.541.81.530.45线性回归直线中,,.21.(12分)如图,在四棱锥中,四边形为正方形,平面,点是棱的中点,,.(1)若,证明:平面平面;(2)若三棱锥的体积为,求二面角的余弦值.22.(10分)已知的内角的对边分别为,且.(Ⅰ)求;(Ⅱ)若的周长是否有最大值?如果有,求出这个最大值,如果没有,请说明理由.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】

设圆锥的母线长为l,底面半径为R,再表达圆锥表面积与球的表面积公式,进而求得即可得圆锥轴截面底角的大小.【详解】设圆锥的母线长为l,底面半径为R,则有,解得,所以圆锥轴截面底角的余弦值是,底角大小为.故选:D【点睛】本题考查圆锥的表面积和球的表面积公式,属于基础题.2、B【解析】

由,进而分别求出展开式中的系数及展开式中的系数,令二者之和等于,可求出实数的值.【详解】由,则展开式中的系数为,展开式中的系数为,二者的系数之和为,得.故选:B.【点睛】本题考查二项式定理的应用,考查学生的计算求解能力,属于基础题.3、D【解析】

根据等式和特征和所求代数式的值的特征用特殊值法进行求解即可.【详解】由可知:令,得;令,得;令,得,得,,而,所以.故选:D【点睛】本题考查了二项式定理的应用,考查了特殊值代入法,考查了数学运算能力.4、C【解析】

本题考查集合的交集和一元二次不等式的解法,渗透了数学运算素养.采取数轴法,利用数形结合的思想解题.【详解】由题意得,,则.故选C.【点睛】不能领会交集的含义易致误,区分交集与并集的不同,交集取公共部分,并集包括二者部分.5、B【解析】

由题得,,解得,,计算可得.【详解】,,,,解得,,.故选:B【点睛】本题主要考查了等差数列的通项公式,前项和公式,考查了学生运算求解能力.6、D【解析】

求出命题不等式的解为,是的必要不充分条件,得是的子集,建立不等式求解.【详解】解:命题,即:,是的必要不充分条件,,,解得.实数的取值范围为.故选:.【点睛】本题考查根据充分、必要条件求参数范围,其思路方法:(1)解决此类问题一般是把充分条件、必要条件或充要条件转化为集合之间的关系,然后根据集合之间关系列出关于参数的不等式(组)求解.(2)求解参数的取值范围时,一定要注意区间端点值的检验.7、A【解析】

结合复数的除法运算和模长公式求解即可【详解】∵复数,∴,,则,故选:A.【点睛】本题考查复数的除法、模长、平方运算,属于基础题8、C【解析】

若对任意的恒成立,则为的最大值,所以由已知,只需求出取得最大值时的n即可.【详解】由已知,,又三角形有一个内角为,所以,,解得或(舍),故,当时,取得最大值,所以.故选:C.【点睛】本题考查等差数列前n项和的最值问题,考查学生的计算能力,是一道基础题.9、B【解析】

作出约束条件的可行域,在可行域内求的最小值即为的最小值,作,平移直线即可求解.【详解】作出实数满足不等式组的可行域,如图(阴影部分)令,则,作出,平移直线,当直线经过点时,截距最小,故,即的最小值为.故选:B【点睛】本题考查了简单的线性规划问题,解题的关键是作出可行域、理解目标函数的意义,属于基础题.10、C【解析】

先求出五个“完全数”随机分为两组,一组2个,另一组3个的基本事件总数为,再求出6和28恰好在同一组包含的基本事件个数,根据即可求出6和28不在同一组的概率.【详解】解:根据题意,将五个“完全数”随机分为两组,一组2个,另一组3个,则基本事件总数为,则6和28恰好在同一组包含的基本事件个数,∴6和28不在同一组的概率.故选:C.【点睛】本题考查古典概型的概率的求法,涉及实际问题中组合数的应用.11、D【解析】

图象关于轴对称的函数为偶函数,用偶函数的定义及性质对选项进行判断可解.【详解】图象关于轴对称的函数为偶函数;A中,,,故为奇函数;B中,的定义域为,不关于原点对称,故为非奇非偶函数;C中,由正弦函数性质可知,为奇函数;D中,且,,故为偶函数.故选:D.【点睛】本题考查判断函数奇偶性.判断函数奇偶性的两种方法:(1)定义法:对于函数的定义域内任意一个都有,则函数是奇函数;都有,则函数是偶函数(2)图象法:函数是奇(偶)函数函数图象关于原点(轴)对称.12、C【解析】

根据三视图作出几何体的直观图,结合三视图的数据可求得几何体的体积.【详解】根据三视图还原几何体的直观图如下图所示:由图可知,该几何体是在棱长为的正方体中截去四棱锥所形成的几何体,该几何体的体积为.故选:C.【点睛】本题考查利用三视图计算几何体的体积,考查空间想象能力与计算能力,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】

利用导数的几何意义,由解方程即可.【详解】由已知,,所以,解得.故答案为:.【点睛】本题考查导数的几何意义,考查学生的基本运算能力,是一道基础题.14、答案不唯一,如【解析】

根据对基本函数的理解可得到满足条件的函数.【详解】由题意,不妨设,则在都成立,但是在是单调递增的,在是单调递减的,说明原命题是假命题.所以本题答案为,答案不唯一,符合条件即可.【点睛】本题考查对基本初等函数的图像和性质的理解,关键是假设出一个在上不是单调递减的函数,再检验是否满足命题中的条件,属基础题.15、8【解析】

利用的代换,将写成,然后根据基本不等式求解最小值.【详解】因为(即取等号),所以最小值为.【点睛】已知,求解()的最小值的处理方法:利用,得到,展开后利用基本不等式求解,注意取等号的条件.16、【解析】

不妨设双曲线,焦点,令,由的长为实轴的二倍能够推导出的离心率.【详解】不妨设双曲线,焦点,对称轴,由题设知,因为的长为实轴的二倍,,,,故答案为.【点睛】本题主要考查利用双曲线的简单性质求双曲线的离心率,属于中档题.求解与双曲线性质有关的问题时要结合图形进行分析,既使不画出图形,思考时也要联想到图形,当涉及顶点、焦点、实轴、虚轴、渐近线等双曲线的基本量时,要理清它们之间的关系,挖掘出它们之间的内在联系.求离心率问题应先将用有关的一些量表示出来,再利用其中的一些关系构造出关于的等式,从而求出的值.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)或【解析】

(1)根据解析式求得导函数,设切点坐标为,结合导数的几何意义可得方程,构造函数,并求得,由导函数求得有最小值,进而可知由唯一零点,即可代入求得的值;(2)将解析式代入,结合零点定义化简并分离参数得,构造函数,根据题意可知直线与曲线有两个交点;求得并令求得极值点,列出表格判断的单调性与极值,即可确定与有两个交点时的取值范围.【详解】(1)依题意,,,设切点为,,故,故,则;令,,故当时,,当时,,故当时,函数有最小值,由于,故有唯一实数根0,即,则;(2)由,得.所以“在区间上有两个零点”等价于“直线与曲线在有两个交点”;由于.由,解得,.当变化时,与的变化情况如下表所示:30+0极小值极大值所以在,上单调递减,在上单调递增.又因为,,,,故当或时,直线与曲线在上有两个交点,即当或时,函数在区间上有两个零点.【点睛】本题考查了导数的几何意义应用,由切线方程求参数值,构造函数法求参数的取值范围,函数零点的意义及综合应用,属于难题.18、(1)实地看病的满意度更高,理由见解析;(2)列联表见解析,有;(3).【解析】

(1)对实地看病满意度更高,可以从茎叶图四个方面选一个回答即可;(2)先完成列联表,再由独立性检验得有的把握认为患者看病满意度与看病方式有关;(3)利用古典概型的概率公式求得这2人平分都低于90分的概率.【详解】(1)对实地看病满意度更高,理由如下:(i)由茎叶图可知:在网络看病中,有的患者满意度评分低于80分;在实地看病中,有的患者评分高于80分,因此患者对实地看病满意度更高.(ii)由茎叶图可知:网络看病满意度评分的中位数为73分,实地看病评分的中位数为87分,因此患者对实地看病满意度更高.(iii)由茎叶图可知:网络看病的满意度评分平均分低于80分;实地看病的满意度的评分平均分高于80分,因此患者对实地看病满意度更高.(iV)由茎叶图可知:网络看病的满意度评分在茎6上的最多,关于茎7大致呈对称分布;实地看病的评分分布在茎8,上的最多,关于茎8大致呈对称分布,又两种看病方式打分的分布区间相同,故可以认为实地看病评分比网络看病打分更高,因此实地看病的满意度更高.以上给出了4种理由,考生答出其中任意一一种或其他合理理由均可得分.(2)参加网络看病满意度调查的15名患者中共有5名对网络看病满意,10名对网络看病不满意;参加实地看病满意度调查的15名患者中共有10名对实地看病满意,5名对实地看病不满意.故完成列联表如下:满意不满意总计网络看病51015实地看病10515总计151530于是,所以有的把握认为患者看病满意度与看病方式有关.(3)网络看病的评价的分数依次为82,85,85,88,92,由小到大分别记为,从网络看病的评价“满意”的人中随机抽取2人,所有可能情况有:;;;共10种,其中,这2人评分都低于90分的情况有:;;共6种,故由古典概型公式得这2人评分都低于90分的概率.【点睛】本题主要考查茎叶图的应用和独立性检验,考查古典概型的概率的计算,意在考查学生对这些知识的理解掌握水平.19、(Ⅰ);(Ⅱ)。【解析】

(Ⅰ)分类讨论,去掉绝对值,求得原绝对值不等式的解集;(Ⅱ)由条件利用基本不等式求得,,再由,求得的范围.【详解】(Ⅰ)当时,原不等式可化为,此时不成立;当时,原不等式可化为,解得,即;当时,原不等式可化为,解得.综上,原不等式的解集是.(Ⅱ)因为,当且仅当时等号成立,所以.当时,,所以.所以,解得,故实数的取值范围为.【点睛】本题主要考查了绝对值不等式的解法,以及转化与化归思想,难度一般;常见的绝对值不等式的解法,法一:利用绝对值不等式的几何意义求解,体现了数形结合的思想;法二:利用“零点分段法”求解,体现了分类讨论的思想;法三:通过构造函数,利用函数的图象求解,体现了函数与方程的思想.20、(Ⅰ)1131;(Ⅱ)(i);(ⅱ)125箱【解析】

(Ⅰ)根据参考数据得到和,代入得到回归直线方程,,再代入求成本,最后代入利润公式;(Ⅱ)(ⅰ)首先分别计算水果箱数在和内的天数,再用编号列举基本事件的方法求概率;(ⅱ)根据频率分布直方图直接计算结果.【详解】(Ⅰ)根据题意,,所以,所以.又,所以.所以时,(千元),即该新奇水果100箱的成本为8314元,故该新奇水果100箱的利润.(Ⅱ)(i)根据频率分布直方图,可知水果箱数在内的天数为设这两天分别为a,b,水果箱数在内的天数为,设这四天分别为A,B,C,D,所以随机抽取2天的基

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论