赣南师范大学科技学院《标志设计》2023-2024学年第一学期期末试卷_第1页
赣南师范大学科技学院《标志设计》2023-2024学年第一学期期末试卷_第2页
赣南师范大学科技学院《标志设计》2023-2024学年第一学期期末试卷_第3页
赣南师范大学科技学院《标志设计》2023-2024学年第一学期期末试卷_第4页
赣南师范大学科技学院《标志设计》2023-2024学年第一学期期末试卷_第5页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共3页赣南师范大学科技学院《标志设计》

2023-2024学年第一学期期末试卷题号一二三四总分得分一、单选题(本大题共15个小题,每小题1分,共15分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、在一个基于计算机视觉的智能零售系统中,需要对顾客的购物行为进行分析,如拿起商品、放回商品等动作的识别。以下哪种技术在动作识别方面可能发挥重要作用?()A.光流分析B.目标跟踪C.动作捕捉D.以上都是2、在计算机视觉的图像生成任务中,假设要生成逼真的人脸图像。以下关于生成模型的架构选择,哪一项是需要特别关注的?()A.选择传统的多层感知机(MLP)架构B.采用生成对抗网络(GAN)架构,通过对抗训练生成高质量图像C.运用卷积神经网络(CNN)架构,但不使用池化层D.构建循环神经网络(RNN)架构,处理图像的序列信息3、计算机视觉中的光流计算用于估计图像中像素的运动。假设要对一个快速运动的物体进行光流估计,同时场景中存在光照变化和噪声干扰。在这种情况下,以下哪种光流计算方法能够提供更准确和稳定的结果?()A.Lucas-Kanade方法B.Horn-Schunck方法C.Farneback方法D.DeepFlow方法4、在计算机视觉中,图像超分辨率重建是提高图像分辨率和质量的技术。以下关于图像超分辨率重建的叙述,不正确的是()A.图像超分辨率重建可以通过插值、基于模型的方法或深度学习方法来实现B.深度学习方法在图像超分辨率重建中能够生成更清晰、逼真的细节C.图像超分辨率重建在医学图像、卫星图像和监控图像等领域有重要的应用D.图像超分辨率重建可以无限制地提高图像的分辨率,不受原始图像信息的限制5、计算机视觉在无人驾驶中的应用需要对周围环境进行快速准确的感知。假设车辆要在复杂的城市道路环境中行驶,以下哪种传感器的数据融合可能对提高环境感知的可靠性至关重要?()A.摄像头与激光雷达B.摄像头与毫米波雷达C.激光雷达与超声波传感器D.以上都有可能6、对于图像的语义理解任务,假设要理解一张图像所表达的场景和事件,例如判断一张图像是在举行婚礼还是在举办音乐会。图像中的信息可能比较隐晦和复杂。以下哪种方法可能有助于提高语义理解的准确性?()A.构建图像的语义图,分析物体之间的关系B.只关注图像中的主要物体,忽略背景信息C.对图像进行简单的分类,不进行深入的语义分析D.随机猜测图像的语义7、在计算机视觉的车牌识别任务中,需要从车辆图像中准确提取车牌号码。假设车牌存在倾斜、变形和光照不均等问题。以下哪种车牌识别方法在应对这些挑战时表现更为出色?()A.基于字符分割的车牌识别B.基于模板匹配的车牌识别C.基于深度学习的车牌识别D.基于特征提取的车牌识别8、在计算机视觉的图像配准任务中,需要将不同视角或时间拍摄的图像进行对齐。假设要将两张具有一定旋转和平移差异的图像进行配准,以下关于图像配准方法的描述,正确的是:()A.基于特征点匹配的图像配准方法对图像的变形和光照变化不敏感B.直接使用像素值的相似性度量就能实现准确的图像配准C.图像配准不需要考虑图像的分辨率和比例尺差异D.深度学习在图像配准中的应用还不成熟,不如传统方法有效9、在计算机视觉的图像特征提取中,假设要提取对光照、旋转和缩放具有不变性的特征。以下关于特征提取方法的描述,正确的是:()A.SIFT特征具有良好的不变性,但计算复杂度高,实时性差B.HOG特征对光照变化适应性强,但对旋转和缩放较敏感C.LBP特征能够快速提取,但特征表达能力有限D.没有一种特征提取方法能够同时满足对光照、旋转和缩放的不变性要求10、在计算机视觉的图像质量评估任务中,假设要评估一张经过处理后的图像的质量。以下关于图像质量评估方法的描述,正确的是:()A.主观评估方法通过人的观察和判断来评价图像质量,结果准确可靠B.客观评估方法中的全参考方法需要原始未失真图像作为参考,计算复杂度低C.无参考图像质量评估方法能够在没有原始图像的情况下准确评估图像质量D.所有的图像质量评估方法都能够完全反映人对图像质量的主观感受11、图像压缩是为了减少图像的数据量,同时保持可接受的视觉质量。假设我们需要在网络上传输大量的图像,以下哪种图像压缩标准能够在保证较高压缩比的同时,提供较好的图像质量?()A.JPEGB.PNGC.GIFD.BMP12、在计算机视觉的场景理解任务中,需要对图像中的物体、关系和上下文进行综合分析。假设要理解一个室内场景的布局和功能,以下哪种信息可能是最关键的?()A.物体的形状和颜色B.物体之间的空间位置关系C.图像的亮度和对比度D.图像的拍摄角度13、在计算机视觉的场景理解任务中,假设要理解一个室内场景的布局和物体关系。以下关于利用深度学习模型的方法,哪一项是不太恰当的?()A.使用卷积神经网络(CNN)提取图像特征B.运用循环神经网络(RNN)处理场景的序列信息C.直接使用未经训练的神经网络,期望其自动学习场景理解D.结合CNN和RNN,构建端到端的场景理解模型14、在计算机视觉的全景图像拼接任务中,假设要将多张拍摄的局部图像拼接成一幅完整的全景图。以下关于图像匹配和融合的步骤,哪一项是容易出错的?()A.准确找到相邻图像之间的特征点进行匹配B.对匹配后的图像进行几何校正和投影变换C.直接将图像拼接在一起,不进行任何过渡处理D.采用合适的融合算法,消除拼接处的明显痕迹15、在计算机视觉的立体视觉中,需要通过两个或多个相机获取的图像来计算深度信息。假设要为一个自动驾驶汽车构建立体视觉系统,以测量与前方障碍物的距离,同时要考虑实时性和准确性的要求。以下哪种立体匹配算法在这种应用场景中表现最优?()A.基于区域的匹配B.基于特征的匹配C.基于深度学习的匹配D.全局优化匹配二、简答题(本大题共4个小题,共20分)1、(本题5分)简述图像的特征匹配方法。2、(本题5分)解释计算机视觉中的运动模糊恢复方法。3、(本题5分)计算机视觉中如何辅助新闻编辑和内容筛选?4、(本题5分)简述计算机视觉中迁移学习的方法和优势。三、应用题(本大题共5个小题,共25分)1、(本题5分)使用目标跟踪算法,对赛车比赛中的赛车进行实时跟踪和速度监测。2、(本题5分)运用图像分割技术,将人物从背景中分离出来。3、(本题5分)通过图像分割技术,将卫星图像中的冰雪覆盖区域和非覆盖区域进行划分。4、(本题5分)运用图像识别算法,对不同类型的交通工具图像进行分类和识别。5、(本题5分)利用图像分割技术,从核磁共振图像中分割出肿瘤区域。四、分析题(本大题共4个小题,共40分)1、(本题10分)研究某家居品牌的线上店铺设计,分析其产品展示方式、用户评价展示、购物流程便捷性如何提高销售额。2、(本题10分)一家餐厅的品牌形象升级,新的设计更加时尚和独

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论