空间向量练习及答案解析_第1页
空间向量练习及答案解析_第2页
空间向量练习及答案解析_第3页
空间向量练习及答案解析_第4页
空间向量练习及答案解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第第页空间向量练习一、选择题(共15小题,每小题4.0分,共60分)1.已知平面α的一个法向量是(2,-1,1),α∥β,则下列向量可作为平面β的一个法向量的是()A.(4,2,-2)B.(2,0,4)C.(2,-1,-5)D.(4,-2,2)2.如图,过边长为1的正方形ABCD的顶点A作线段EA⊥平面AC,若EA=1,则平面ADE与平面BCE所成的二面角的大小是()A.120°B.45°C.150°D.60°3.已知=(1,2,3),=(2,1,2),=(1,1,2),点Q在直线OP上运动,则当·取得最小值时,点Q的坐标为()A.B.C.D.4.将正方形ABCD沿对角线BD折成直二面角A-BD-C,有如下四个结论:①AC⊥BD;②△ACD是等边三角形;③AB与平面BCD所成的角为60°;④AB与CD所成的角为60°.其中错误的结论是()A.①B.②C.③D.④5.如图所示,在三棱柱ABC-A1B1C1中,AA1⊥底面ABC,AB=BC=AA1,∠ABC=90°,点E,F分别是棱AB,BB1的中点,则直线EF和BC1的夹角是()A.45°B.60°C.90°D.120°6.已知在空间四面体O-ABC中,点M在线段OA上,且OM=2MA,点N为BC中点,设=a,=b,=c,则等于()A.a+b-cB.-a+b+cC.a-b+cD.a+b-c7.已知在棱长为2的正方体ABCD-A1B1C1D1中,E是DC的中点,建立如图所示的空间直角坐标系,则AB1与D1E所成角的余弦值为()A.B.C.-D.-8.如图所示,在正方体ABCD-A1B1C1D1中,M,N,P分别是棱CC1,BC,A1B1上的点,若∠B1MN=90°,则∠PMN的大小()A.等于90°B.小于90°C.大于90°D.不确定9.如图,S是正三角形ABC所在平面外一点,M,N分别是AB和SC的中点,SA=SB=SC,且∠ASB=∠BSC=∠CSA=90°,则异面直线SM与BN所成角的余弦值为()A.-B.C.-D.10.已知平面α内两向量a=(1,1,1),b=(0,2,-1)且c=ma+nb+(4,-4,1).若c为平面α的法向量,则m,n的值分别为()A.-1,2B.1,-2C.1,2D.-1,-211.如图,在三棱柱ABC-A1B1C1中,侧棱AA1⊥底面ABC,底面ABC是等腰直角三角形,∠ACB=90°,侧棱AA1=2,D,E分别是CC1与A1B的中点,点E在平面ABD上的射影是△ABD的重心G,则A1B与平面ABD所成角的正弦值为()A.23B.73C.3212.如图,在直三棱柱ABC-A1B1C1中,∠ACB=90°,2AC=AA1=BC=2,若二面角B1-DC-C1的大小为60°,则AD的长为()A.2B.3C.2D.213.三棱锥A-BCD中,平面ABD与平面BCD的法向量分别为n1,n2,若〈n1,n2〉=π3,则二面角A-BD-CA.π3B.2π3C.π3或2π14.已知AB=(1,5,-2),BC=(3,1,z),若AB⊥BC,BP=(x-1,y,-3),且BP⊥平面ABC,则BP等于()A.407,157,-3B.337,15.如图,在平行六面体ABCD-A1B1C1D1中,点M,P,Q分别为棱AB,CD,BC的中点,平行六面体的各棱长均相等.给出下列结论:①A1M∥D1P;②A1M∥B1Q;③A1M∥平面DCC1D1;④A1M∥平面D1PQB1.这四个结论中正确的个数为()A.1B.2C.3D.4二、填空题(共6小题,每小题4.0分,共24分)16.如图所示,已知正四面体A-BCD中,AE=AB,CF=CD,则直线DE和BF所成角的余弦值为________.17.已知a=(3,-2,-3),b=(-1,x-1,1),且a与b的夹角为钝角,则x的取值范围是________.18.如图,平面PAD⊥平面ABCD,ABCD为正方形,∠PAD=90°,且PA=AD=2,E,F分别是线段PA,CD的中点,则异面直线EF与BD所成角的余弦值为________.19.如图,在三棱柱ABC-A1B1C1中,所有棱长均为1,且AA1⊥底面ABC,则点B1到平面ABC1的距离为________.20.如下图所示,PD垂直于正方形ABCD所在平面,AB=2,E为PB的中点,cos〈DP,AE〉=33,若以DA,DC,DP所在直线分别为x,y,z轴建立空间直角坐标系,则点E的坐标为________.21.已知点P是平行四边形ABCD所在的平面外一点,如果AB=(2,-1,-4),AD=(4,2,0),AP=(-1,2,-1).对于结论:①AP⊥AB;②AP⊥AD;③AP是平面ABCD的法向量;④AP∥BD.其中正确的是____________.三、解答题(共6小题,每小题11.0分,共66分)22.如图所示,已知四棱锥P-ABCD的底面为直角梯形,AB∥DC,∠DAB=90°,PA⊥底面ABCD,且PA=AD=DC=12AB=1,M是PB的中点.(1)证明:面PAD⊥面PCD;(2)求AC与PB所成角的余弦值;(3)求面AMC与面BMC所成二面角的余弦值.23.如下图所示,在三棱锥P-ABC中,PA⊥底面ABC,PA=AB,∠ABC=60°,∠BCA=90°,点D,E分别在棱PB,PC上,且DE∥BC.(1)求证:BC⊥平面PAC;(2)当D为PB的中点时,求AD与平面PAC所成的角的正弦值;(3)是否存在点E,使得二面角A-DE-P为直二面角?并说明理由.24.如图,在棱长为2的正方体ABCD-A1B1C1D1中,点E,F是棱BC,CD的中点,求:(1)直线DF与B1F所成角的余弦值;(2)二面角C1-EF-A的余弦值.25.如图,在四棱锥S-ABCD中,底面ABCD是直角梯形,AB垂直于AD和BC,侧棱SB⊥平面ABCD,且SB=AB=AD=1,BC=2.(1)求SA与CD所成的角;(2)求平面SCD与平面SAB所成的锐二面角的余弦值.26.如下图,四棱柱ABCD-A1B1C1D1中,侧棱A1A⊥底面ABCD,AB∥DC,AB⊥AD,AD=CD=1,AA1=AB=2,E为棱AA1的中点.(1)证明B1C1⊥CE;(2)求二面角B1-CE-C1的正弦值.27.如下图,在正四棱柱ABCD-A1B1C1D1中,AB=2,AA1=4,E为BC的中点,F为CC1的中点.(1)求EF与平面ABCD所成的角的余弦值;(2)求二面角F-DE-C的余弦值.空间向量练习答案解析1.【答案】D【解析】∵α∥β,∴β的法向量与α的法向量平行,又∵(4,-2,2)=2(2,-1,1),故选D.2.【答案】B【解析】以A为坐标原点,分别以AB,AD,AE所在直线为x轴,y轴,z轴,建立如图所示的空间直角坐标系Axyz,则E(0,0,1),B(1,0,0),C(1,1,0),=(1,0,-1),=(1,1,-1).设平面BCE的法向量为n=(x,y,z),则即可取n=(1,0,1).又平面EAD的法向量为=(1,0,0),所以cos〈n,〉==,故平面ADE与平面BCE所成的二面角为45°.3.【答案】C【解析】设Q(x,y,z),因Q在上,故有∥,设=λ(λ∈R),可得x=λ,y=λ,z=2λ,则Q(λ,λ,2λ),=(1-λ,2-λ,3-2λ),=(2-λ,1-λ,2-2λ),所以·=6λ2-16λ+10=62-,故当λ=时,·取最小值,此时Q.4.【答案】C【解析】如图所示,取BD的中点O,以点O为坐标原点,OD,OA,OC所在直线分别为x轴,y轴,z轴,建立空间直角坐标系Oxyz,设正方形ABCD边长为,则D(1,0,0),B(-1,0,0),C(0,0,1),A(0,1,0),所以=(0,-1,1),=(2,0,0),·=0,故AC⊥BD.①正确.又||=,||=,||=,所以△ACD为等边三角形.②正确.对于③,为面BCD的一个法向量,cos〈,〉====-.所以AB与OA所在直线所成的角为45°,所以AB与平面BCD所成角为45°.故③错误.又cos〈,〉===-.因为异面直线所成的角为锐角或直角,所以AB与CD所成角为60°.故④正确.5.【答案】B【解析】不妨设AB=BC=AA1=1,则=-=(-),=+,∴||=|-|=,||=,·=(-)·(+)=,∴cos〈,〉===,∴〈,〉=60°,即异面直线EF与BC1的夹角是60°.6.【答案】B【解析】=-=(+)-=b+c-a.7.【答案】A【解析】∵A(2,2,0),B1(2,0,2),E(0,1,0),D1(0,2,2),∴=(0,-2,2),=(0,1,2),∴||=2,||=,·=0-2+4=2,∴cos〈,〉===,又异面直线所成角的范围是,∴AB1与ED1所成角的余弦值为.8.【答案】A【解析】A1B1⊥平面BCC1B1,故A1B1⊥MN,·=(+)·=·+·=0,∴MP⊥MN,即∠PMN=90°.9.【答案】B【解析】不妨设SA=SB=SC=1,以S为坐标原点,,,所在直线分别为x轴,y轴,z轴,建立空间直角坐标系Sxyz,则相关各点坐标为A(1,0,0),B(0,1,0),C(0,0,1),S(0,0,0),M,N.因为=,=,所以||=,||=,·=-,cos〈,〉==-,因为异面直线所成的角为锐角或直角,所以异面直线SM与BN所成角的余弦值为.10.【答案】A【解析】c=ma+nb+(4,-4,1)=(m,m,m)+(0,2n,-n)+(4,-4,1)=(m+4,m+2n-4,m-n+1),由c为平面α的法向量,得即解得11.【答案】A【解析】∵侧棱与底面垂直,∠ACB=90°,所以分别以CA,CB,CC1所在直线为x轴、y轴、z轴,建立如图空间直角坐标系,设CA=CB=a,则A(a,0,0),B(0,a,0),A1(a,0,2),D(0,0,1),∴Ea2,a2,1,Ga3,a3∵点E在平面ABD上的射影是△ABD的重心G,∴GE⊥平面ABD,∴GE·BD=0,解得a=2,∴GE=13,1∵GE⊥平面ABD,∴GE为平面ABD的一个法向量,又cos〈GE,BA1〉=GE·BA1GEBA1=4363×212.【答案】A【解析】如下图,以C为坐标原点,CA,CB,CC1所在的直线分别为x轴,y轴,z轴建立空间直角坐标系,则C(0,0,0),A(1,0,0),B1(0,2,2),C1(0,0,2)设AD=a,则D点坐标为(1,0,a),CD=(1,0,a),CB1=(0,2,2),设平面B1CD的一个法向量为m=(x,y,则m·CB1=0,m·得m=(a,1,-1),又平面C1DC的一个法向量为n=(0,1,0),则由cos60°=m·nmn,得1a2+1=12,即a=13.【答案】C【解析】如图所示,当二面角A-BD-C为锐角时,它就等于〈n1,n2〉=π3;当二面角A-BD-C为钝角时,它应等于π-〈n1,n2〉=π-π3=14.【答案】D【解析】因为AB⊥BC,所以AB·BC=0,即1×3+5×1+(-2)z=0,所以z=4,因为BP⊥平面ABC,所以BP⊥AB,且BP⊥BC,即1×(x-1)+5y+(-2)×(-3)=0,且3(x-1)+y+(-3)×4=0.解得x=407,y=-157,于是BP=15.【答案】C【解析】因为A1M=A1A+AM=A1A+12AB,D1所以A1M∥D1P,从而A1M∥又B1Q与D1P不平行,故②不正确.故选C.16.【答案】【解析】=+=+,=+=+,所以cos〈,〉====.17.【答案】B【解析】若两向量的夹角为钝角,则a·b<0,且a与b不共线,故3×(-1)+(-2)×(x-1)+(-3)×1<0,且x≠,解得x>-2,且x≠,故选B.18.【答案】【解析】以A为坐标原点,AB,AD,AP所在直线分别为x轴,y轴,z轴,建立如图所示空间直角坐标系Axyz,则E(0,0,1),F(1,2,0),B(2,0,0),D(0,2,0).=(1,2,-1),=(-2,2,0),故cos〈,〉==.19.【答案】21【解析】建立如图所示的空间直角坐标系,则A32,12,0,B(0,1,0),B1(0,1,1),C1(0,0,1),则C1A=32,12,-1,C则有C1A·n=32则所求距离为C1B1·n20.【答案】(1,1,1)【解析】设PD=a(a>0),则A(2,0,0),B(2,2,0),P(0,0,a),E1,1,a2.∴DP=(0,0,a),AE∵cos〈DP,AE〉=33,∴a22=a2+a24·21.【答案】①②③【解析】由于AP·AB=-1×2+(-1)×2+(-4)×(-1)=0,AP·AD=4×(-1)+2×2+0×(-1)=0,所以①②③正确.22.【答案】因为PA⊥AD,PA⊥AB,AD⊥AB,以A为坐标原点,AD长为单位长度,如图建立空间直角坐标系,则各点坐标为A(0,0,0),B(0,2,0),C(1,1,0),D(1,0,0),P(0,0,1),M0,1,(1)∵AP=(0,0,1),DC=(0,1,0),故AP·DC=0,∴AP⊥DC,∴AP⊥又由题设知:AD⊥DC,且AP与AD是平面PAD内的两条相交直线,由此得DC⊥面PAD,又DC在面PCD上,故面PAD⊥面PCD;(2)∵AC=(1,1,0),PB=(0,2,-1),∴|AC|=2,|PB|=5,AC·PB=2,∴cos〈AC,PB〉=105由此得AC与PB所成角的余弦值为105(3)在MC上取一点N(x,y,z),则存在λ∈R,使NC=λMC,NC=(1-x,1-y,-z),MC=1,0,-∴x=1-λ,y=1,z=12λ要使AN⊥MC,只需AN·MC=0,即x-12z=0,解得λ=4可知当λ=45时,N点坐标为15,1,此时,AN=15,1,25,由AN·MC=0,BN·MC=0,得AN⊥MC,BN⊥∴∠ANB为所求二面角的平面角,∵|AN|=305,|BN|=305,AN·BN=-45,∴cos〈AN故所求的二面角的余弦值为-23.23.【答案】以A为原点,AB,AP分别为y轴、z轴的正方向,过A点且垂直于平面PAB的直线为x轴,建立空间直角坐标系Axyz,设PA=a,由已知可得:A(0,0,0),B(0,a,0),C34a,34a,0(1)AP=(0,0,a),BC=34a,-a4,0,∴BC·AP=0,∴BC又∵∠BCA=90°,∴BC⊥AC,∴BC⊥平面PAC.(2)∵D为PB的中点,DE∥BC,∴E为PC的中点,∴D0,a2,a∴由(1)知,BC⊥平面PAC,∴DE⊥平面PAC,垂足为点E,∴∠DAE是AD与平面PAC所成的角,∵AD=0,a2,a2,AE=38a,∴AD与平面PAC所成的角的正弦值为24(3)∵DE∥BC,又由(1)知BC⊥平面PAC,∴DE⊥平面PAC,又∵AE⊂平面PAC,PE⊂平面PAC,∴DE⊥AE,DE⊥PE,∴∠AEP为二面角A-DE-P的平面角.∵PA⊥底面ABC,∴PA⊥AC,∴∠PAC=90°,∴在棱PC上存在一点E,使得AE⊥PC,这时∠AEP=90°,故存在点E,使得二面角A-DE-P是直二面角.24.【答案】如图,以A为坐标原点,建立空间直角坐标系Axyz,则D(0,2,0),E(2,1,0),F(1,2,0),B1(2,0,2),C1(2,2,2),(1)因为DE=(2,-1,0),B1所以cos〈DE,B1F〉=DE·B1所以直线DE与B1F所成角的余弦值为45(2)因为C1E=(0,-1,-2),设平面C1EF的一个法向量为n=(x,y,1),则由n·C1解得x=y=-2,所以n=(-2,-2,1),又AA1=(0,0,2)是平面AEF所以cos〈AA1,n〉=n·AA1n观察图形,可知二面角C1-EF-A为钝角,所以二面角C1-EF-A的余弦值为-1325.【答案】(1)建立如图所示的空间直角坐标系,则B(0,0

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论