




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
高中数学/人教A版/必修一教材内容完美复刻第四章指数函数与对数函数4.3对数4.3.1对数的概念对数的定义
常用对数与自然对数的定义名称式子axN底数底数指数对数幂真数求下列各式的值:探索与发现:(1)log31=0(2)lg1=00(3)log0.51=0(4)ln1=你发现了什么?“1”的对数等于零,
即loga1=0求下列各式的值:探索与发现:(1)log33=1(2)lg10=11(3)log0.50.5=1(4)lne=你发现了什么?底数的对数等于“1”,即logaa=1求下列各式的值:探索与发现:你发现了什么?30.689
对数恒等式:对数恒等式:求下列各式的值:探索与发现:你发现了什么?
对数恒等式:458对数的基本性质1.负数和零没有对数;2.“1”的对数等于零,即loga1=03.底数的对数等于“1”,即logaa=14.对数恒等式:5.对数恒等式:例1
把下列指数式化为对数式,对数式化为指数式:解:解:1.把下列指数式写成对数式,对数式写成指数式:解:解:解:4.3.2对数的运算在引入对数之后,自然应研究对数的运算性质.你认为可以怎样研究?探究我们知道了对数与指数间的关系,能否利用指数幂运算性质得出相应的对数运算性质呢?于是,我们得到如下的对数运算性质.解:解:数学史上,人们经过大量的努力,制作了常用对数表和自然对数表,只要通过查表就能求出任意正数的常用对数或自然对数.现在,利用计算工具,也可以直接求出任意正数的常用对数或自然对数.这样,如果能将其他底的对数转换为以10或e为底的对数,就能方便地求出这些对数.我们把上式叫做对数换底公式.两个较为常用的推论:1由此可得,大约经过7年,B地景区的游客人次就达到2001年的2倍.类似地,可以求出游客人次是2001年的3倍,4倍,…所需要的年数.例5
尽管目前人类还无法准确预报地震,但科学家通过研究,已经对地震有所了解,例如,地震时释放出的能量E(单位:焦耳)与地震里氏震级M之间的关系为2011年3月11日,日本东北部海域发生里氏9.0级地震,它所释放出来的能量是2008年5月12日我国汶川发生里氏8.0级地震的多少倍(精确到1)?解:虽然里氏9.0级地震与里氏8.0级地震仅相差1级,但前者释放出来的能量却是后者的约32倍.想一想,为什么两次地震的里氏震级仅差1级,而释放的能量却相差那么多呢?练习(第126页)解:解:解:解:习题4.3(126页)解:D解析:C解析:解:解:解:解:解:解:证明:8.某地GDP的年平均增长率为6.5%,按此增长率,多少年后该地GDP会翻两番?解:解:解:10.酒驾是严重危害交通安全的违法行为.为了保障交通安全,根据国家有关规定:100mL血液中酒精含量达到20~79mg的驾驶员即为酒后驾车,80mg及以上认定为醉酒驾车.假设某驾驶员喝了一定量的酒后,其血液中的酒精含量上升到了1mg/mL.如果在停止喝酒以后,他血液中酒精含量会以每小时30
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025版车辆损害赔偿协议书范本与车辆维修质量保障及索赔程序
- 2025班组劳动合同(智慧城市班组应用)
- 二零二五年度数字文化创意产业标准服务合同
- 二零二五年度工业园区车库租赁及安全生产协议
- 2025版叉车租赁及租赁期限调整服务合同
- 2025版办事处合作框架协议范本(区域代理)
- 2025版车辆维修保养居间服务协议(含诚信服务承诺)
- 2025版不锈钢水箱生产设备租赁合同范本
- 二零二五年度健康保健品购销合作框架协议
- 二零二五年度医院安保外包合同终止与患者安全协议
- 中医内科学方剂歌诀
- 智能实时音视频传输网络的应用场景与需求
- 模块10 焊接接头的强度计算《焊接科学与工程》教学课件
- 过滤纸板产品营销计划书
- 高级半导体分立器件和集成电路装调工技能鉴定考试题库(含答案)
- 2024年工会专业知识考试题库及答案
- 宁夏回族自治区吴忠市五年级数学期末评估试卷详细答案和解析
- 天津市部分区2023-2024学年高一学期期末生物试卷
- 施工现场视频监控系统施工方案
- 电梯维护保养规则(TSG T5002-2017)
- 义务教育数学课程标准(2022年版)解读与案例分析
评论
0/150
提交评论