![2025届河南河北山西高三(最后冲刺)数学试卷含解析_第1页](http://file4.renrendoc.com/view12/M04/13/0D/wKhkGWdF-IOAU3JBAAHw_qAU3AY017.jpg)
![2025届河南河北山西高三(最后冲刺)数学试卷含解析_第2页](http://file4.renrendoc.com/view12/M04/13/0D/wKhkGWdF-IOAU3JBAAHw_qAU3AY0172.jpg)
![2025届河南河北山西高三(最后冲刺)数学试卷含解析_第3页](http://file4.renrendoc.com/view12/M04/13/0D/wKhkGWdF-IOAU3JBAAHw_qAU3AY0173.jpg)
![2025届河南河北山西高三(最后冲刺)数学试卷含解析_第4页](http://file4.renrendoc.com/view12/M04/13/0D/wKhkGWdF-IOAU3JBAAHw_qAU3AY0174.jpg)
![2025届河南河北山西高三(最后冲刺)数学试卷含解析_第5页](http://file4.renrendoc.com/view12/M04/13/0D/wKhkGWdF-IOAU3JBAAHw_qAU3AY0175.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届河南河北山西高三(最后冲刺)数学试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知四棱锥,底面ABCD是边长为1的正方形,,平面平面ABCD,当点C到平面ABE的距离最大时,该四棱锥的体积为()A. B. C. D.12.甲、乙、丙三人相约晚上在某地会面,已知这三人都不会违约且无两人同时到达,则甲第一个到、丙第三个到的概率是()A. B. C. D.3.已知,,,,则()A. B. C. D.4.直线与抛物线C:交于A,B两点,直线,且l与C相切,切点为P,记的面积为S,则的最小值为A. B. C. D.5.执行如图所示的程序框图,若输出的结果为11,则图中的判断条件可以为()A. B. C. D.6.在中,角所对的边分别为,已知,.当变化时,若存在最大值,则正数的取值范围为A. B. C. D.7.设,是空间两条不同的直线,,是空间两个不同的平面,给出下列四个命题:①若,,,则;②若,,,则;③若,,,则;④若,,,,则.其中正确的是()A.①② B.②③ C.②④ D.③④8.已知抛物线和点,直线与抛物线交于不同两点,,直线与抛物线交于另一点.给出以下判断:①以为直径的圆与抛物线准线相离;②直线与直线的斜率乘积为;③设过点,,的圆的圆心坐标为,半径为,则.其中,所有正确判断的序号是()A.①② B.①③ C.②③ D.①②③9.为研究某咖啡店每日的热咖啡销售量和气温之间是否具有线性相关关系,统计该店2017年每周六的销售量及当天气温得到如图所示的散点图(轴表示气温,轴表示销售量),由散点图可知与的相关关系为()A.正相关,相关系数的值为B.负相关,相关系数的值为C.负相关,相关系数的值为D.正相关,相关负数的值为10.下列几何体的三视图中,恰好有两个视图相同的几何体是()A.正方体 B.球体C.圆锥 D.长宽高互不相等的长方体11.把函数的图象向右平移个单位,得到函数的图象.给出下列四个命题①的值域为②的一个对称轴是③的一个对称中心是④存在两条互相垂直的切线其中正确的命题个数是()A.1 B.2 C.3 D.412.下列命题是真命题的是()A.若平面,,,满足,,则;B.命题:,,则:,;C.“命题为真”是“命题为真”的充分不必要条件;D.命题“若,则”的逆否命题为:“若,则”.二、填空题:本题共4小题,每小题5分,共20分。13.在长方体中,,则异面直线与所成角的余弦值为()A. B. C. D.14.过动点作圆:的切线,其中为切点,若(为坐标原点),则的最小值是__________.15.已知二项式ax-1x6的展开式中的常数项为-16016.(5分)函数的定义域是____________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆的焦点为,,离心率为,点P为椭圆C上一动点,且的面积最大值为,O为坐标原点.(1)求椭圆C的方程;(2)设点,为椭圆C上的两个动点,当为多少时,点O到直线MN的距离为定值.18.(12分)已知椭圆与x轴负半轴交于,离心率.(1)求椭圆C的方程;(2)设直线与椭圆C交于两点,连接AM,AN并延长交直线x=4于两点,若,直线MN是否恒过定点,如果是,请求出定点坐标,如果不是,请说明理由.19.(12分)已知各项均为正数的数列的前项和为,满足,,,,恰为等比数列的前3项.(1)求数列,的通项公式;(2)求数列的前项和为;若对均满足,求整数的最大值;(3)是否存在数列满足等式成立,若存在,求出数列的通项公式;若不存在,请说明理由.20.(12分)购买一辆某品牌新能源汽车,在行驶三年后,政府将给予适当金额的购车补贴.某调研机构对拟购买该品牌汽车的消费者,就购车补贴金额的心理预期值进行了抽样调查,其样本频率分布直方图如图所示.(1)估计拟购买该品牌汽车的消费群体对购车补贴金额的心理预期值的方差(同一组中的数据用该组区间的中点值作代表);(2)将频率视为概率,从拟购买该品牌汽车的消费群体中随机抽取人,记对购车补贴金额的心理预期值高于万元的人数为,求的分布列和数学期望;(3)统计最近个月该品牌汽车的市场销售量,得其频数分布表如下:月份销售量(万辆)试预计该品牌汽车在年月份的销售量约为多少万辆?附:对于一组样本数据,,…,,其回归直线的斜率和截距的最小二乘估计分别为,.21.(12分)已知等差数列{an}的各项均为正数,Sn为等差数列{an}的前n项和,.(1)求数列{an}的通项an;(2)设bn=an⋅3n,求数列{bn}的前n项和Tn.22.(10分)已知函数.(Ⅰ)已知是的一个极值点,求曲线在处的切线方程(Ⅱ)讨论关于的方程根的个数.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】
过点E作,垂足为H,过H作,垂足为F,连接EF.因为平面ABE,所以点C到平面ABE的距离等于点H到平面ABE的距离.设,将表示成关于的函数,再求函数的最值,即可得答案.【详解】过点E作,垂足为H,过H作,垂足为F,连接EF.因为平面平面ABCD,所以平面ABCD,所以.因为底面ABCD是边长为1的正方形,,所以.因为平面ABE,所以点C到平面ABE的距离等于点H到平面ABE的距离.易证平面平面ABE,所以点H到平面ABE的距离,即为H到EF的距离.不妨设,则,.因为,所以,所以,当时,等号成立.此时EH与ED重合,所以,.故选:B.【点睛】本题考查空间中点到面的距离的最值,考查函数与方程思想、转化与化归思想,考查空间想象能力和运算求解能力,求解时注意辅助线及面面垂直的应用.2、D【解析】
先判断是一个古典概型,列举出甲、乙、丙三人相约到达的基本事件种数,再得到甲第一个到、丙第三个到的基本事件的种数,利用古典概型的概率公式求解.【详解】甲、乙、丙三人相约到达的基本事件有甲乙丙,甲丙乙,乙甲丙,乙丙甲,丙甲乙,丙乙甲,共6种,其中甲第一个到、丙第三个到有甲乙丙,共1种,所以甲第一个到、丙第三个到的概率是.故选:D【点睛】本题主要考查古典概型的概率求法,还考查了理解辨析的能力,属于基础题.3、D【解析】
令,求,利用导数判断函数为单调递增,从而可得,设,利用导数证出为单调递减函数,从而证出,即可得到答案.【详解】时,令,求导,,故单调递增:∴,当,设,,又,,即,故.故选:D【点睛】本题考查了作差法比较大小,考查了构造函数法,利用导数判断式子的大小,属于中档题.4、D【解析】
设出坐标,联立直线方程与抛物线方程,利用弦长公式求得,再由点到直线的距离公式求得到的距离,得到的面积为,作差后利用导数求最值.【详解】设,,联立,得则,则由,得设,则,则点到直线的距离从而.令当时,;当时,故,即的最小值为本题正确选项:【点睛】本题考查直线与抛物线位置关系的应用,考查利用导数求最值的问题.解决圆锥曲线中的面积类最值问题,通常采用构造函数关系的方式,然后结合导数或者利用函数值域的方法来求解最值.5、B【解析】
根据程序框图知当时,循环终止,此时,即可得答案.【详解】,.运行第一次,,不成立,运行第二次,,不成立,运行第三次,,不成立,运行第四次,,不成立,运行第五次,,成立,输出i的值为11,结束.故选:B.【点睛】本题考查补充程序框图判断框的条件,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意模拟程序一步一步执行的求解策略.6、C【解析】
因为,,所以根据正弦定理可得,所以,,所以,其中,,因为存在最大值,所以由,可得,所以,所以,解得,所以正数的取值范围为,故选C.7、C【解析】
根据线面平行或垂直的有关定理逐一判断即可.【详解】解:①:、也可能相交或异面,故①错②:因为,,所以或,因为,所以,故②对③:或,故③错④:如图因为,,在内过点作直线的垂线,则直线,又因为,设经过和相交的平面与交于直线,则又,所以因为,,所以,所以,故④对.故选:C【点睛】考查线面平行或垂直的判断,基础题.8、D【解析】
对于①,利用抛物线的定义,利用可判断;对于②,设直线的方程为,与抛物线联立,用坐标表示直线与直线的斜率乘积,即可判断;对于③,将代入抛物线的方程可得,,从而,,利用韦达定理可得,再由,可用m表示,线段的中垂线与轴的交点(即圆心)横坐标为,可得a,即可判断.【详解】如图,设为抛物线的焦点,以线段为直径的圆为,则圆心为线段的中点.设,到准线的距离分别为,,的半径为,点到准线的距离为,显然,,三点不共线,则.所以①正确.由题意可设直线的方程为,代入抛物线的方程,有.设点,的坐标分别为,,则,.所以.则直线与直线的斜率乘积为.所以②正确.将代入抛物线的方程可得,,从而,.根据抛物线的对称性可知,,两点关于轴对称,所以过点,,的圆的圆心在轴上.由上,有,,则.所以,线段的中垂线与轴的交点(即圆心)横坐标为,所以.于是,,代入,,得,所以.所以③正确.故选:D【点睛】本题考查了抛物线的性质综合,考查了学生综合分析,转化划归,数形结合,数学运算的能力,属于较难题.9、C【解析】
根据正负相关的概念判断.【详解】由散点图知随着的增大而减小,因此是负相关.相关系数为负.故选:C.【点睛】本题考查变量的相关关系,考查正相关和负相关的区别.掌握正负相关的定义是解题基础.10、C【解析】
根据基本几何体的三视图确定.【详解】正方体的三个三视图都是相等的正方形,球的三个三视图都是相等的圆,圆锥的三个三视图有一个是圆,另外两个是全等的等腰三角形,长宽高互不相等的长方体的三视图是三个两两不全等的矩形.故选:C.【点睛】本题考查基本几何体的三视图,掌握基本几何体的三视图是解题关键.11、C【解析】
由图象变换的原则可得,由可求得值域;利用代入检验法判断②③;对求导,并得到导函数的值域,即可判断④.【详解】由题,,则向右平移个单位可得,,的值域为,①错误;当时,,所以是函数的一条对称轴,②正确;当时,,所以的一个对称中心是,③正确;,则,使得,则在和处的切线互相垂直,④正确.即②③④正确,共3个.故选:C【点睛】本题考查三角函数的图像变换,考查代入检验法判断余弦型函数的对称轴和对称中心,考查导函数的几何意义的应用.12、D【解析】
根据面面关系判断A;根据否定的定义判断B;根据充分条件,必要条件的定义判断C;根据逆否命题的定义判断D.【详解】若平面,,,满足,,则可能相交,故A错误;命题“:,”的否定为:,,故B错误;为真,说明至少一个为真命题,则不能推出为真;为真,说明都为真命题,则为真,所以“命题为真”是“命题为真”的必要不充分条件,故C错误;命题“若,则”的逆否命题为:“若,则”,故D正确;故选D【点睛】本题主要考查了判断必要不充分条件,写出命题的逆否命题等,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、C【解析】
根据确定是异面直线与所成的角,利用余弦定理计算得到答案.【详解】由题意可得.因为,所以是异面直线与所成的角,记为,故.故选:.【点睛】本题考查了异面直线夹角,意在考查学生的空间想象能力和计算能力.14、【解析】解答:由圆的方程可得圆心C的坐标为(2,2),半径等于1.由M(a,b),则|MN|2=(a−2)2+(b−2)2−12=a2+b2−4a−4b+7,|MO|2=a2+b2.由|MN|=|MO|,得a2+b2−4a−4b+7=a2+b2.整理得:4a+4b−7=0.∴a,b满足的关系为:4a+4b−7=0.求|MN|的最小值,就是求|MO|的最小值.在直线4a+4b−7=0上取一点到原点距离最小,由“垂线段最短”得,直线OM垂直直线4a+4b−7=0,由点到直线的距离公式得:MN的最小值为:.15、2【解析】
在二项展开式的通项公式中,令x的幂指数等于0,求出r的值,即可求得常数项,再根据常数项等于-160求得实数a的值.【详解】∵二项式(ax-1x)令6-2r=0,求得r=3,可得常数项为-C63故答案为:2.【点睛】本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于基础题.16、【解析】
要使函数有意义,则,即,解得,故函数的定义域是.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)当=0时,点O到直线MN的距离为定值.【解析】
(1)的面积最大时,是短轴端点,由此可得,再由离心率及可得,从而得椭圆方程;(2)在直线斜率存在时,设其方程为,现椭圆方程联立消元()后应用韦达定理得,注意,一是计算,二是计算原点到直线的距离,两者比较可得结论.【详解】(1)因为在椭圆上,当是短轴端点时,到轴距离最大,此时面积最大,所以,由,解得,所以椭圆方程为.(2)在时,设直线方程为,原点到此直线的距离为,即,由,得,,,所以,,,所以当时,,,为常数.若,则,,,,,综上所述,当=0时,点O到直线MN的距离为定值.【点睛】本题考查求椭圆方程与椭圆的几何性质,考查直线与椭圆的位置关系,考查运算求解能力.解题方法是“设而不求”法.在直线与圆锥曲线相交时常用此法通过韦达定理联系已知式与待求式.18、(1)(2)直线恒过定点,详见解析【解析】
(1)依题意由椭圆的简单性质可求出,即得椭圆C的方程;(2)设直线的方程为:,联立直线的方程与椭圆方程可求得点的坐标,同理可求出点的坐标,根据的坐标可求出直线的方程,将其化简成点斜式,即可求出定点坐标.【详解】(1)由题有,.∴,∴.∴椭圆方程为.(2)设直线的方程为:,则∴或,∴,同理,当时,由有.∴,同理,又∴,当时,∴直线的方程为∴直线恒过定点,当时,此时也过定点..综上:直线恒过定点.【点睛】本题主要考查利用椭圆的简单性质求椭圆的标准方程,以及直线与椭圆的位置关系应用,定点问题的求法等,意在考查学生的逻辑推理能力和数学运算能力,属于难题.19、(2),(2),的最大整数是2.(3)存在,【解析】
(2)由可得(),然后把这两个等式相减,化简得,公差为2,因为,,为等比数列,所以,化简计算得,,从而得到数列的通项公式,再计算出,,,从而可求出数列的通项公式;(2)令,化简计算得,从而可得数列是递增的,所以只要的最小值大于即可,而的最小值为,所以可得答案;(3)由题意可知,,即,这个可看成一个数列的前项和,再写出其前()项和,两式相减得,,利用同样的方法可得.【详解】解:(2)由题,当时,,即当时,①②①-②得,整理得,又因为各项均为正数的数列.故是从第二项的等差数列,公差为2.又恰为等比数列的前3项,故,解得.又,故,因为也成立.故是以为首项,2为公差的等差数列.故.即2,4,8恰为等比数列的前3项,故是以为首项,公比为的等比数列,故.综上,(2)令,则所以数列是递增的,若对均满足,只要的最小值大于即可因为的最小值为,所以,所以的最大整数是2.(3)由,得,③④③-④得,⑤,⑥⑤-⑥得,,所以存在这样的数列,【点睛】此题考查了等差数列与等比数列的通项公式与求和公式,最值,恒成立问题,考查了推理能力与计算能力,属于中档题.20、(1)1.7;(2),见解析;(2)2.【解析】
(1)平均数的估计值为每个小矩形组中值乘以小矩形面积的和;(2)易得,由二项分布列的期望公式计算;(3)利用所给公式计算出回归直线即可解决.【详解】(1)由频率分布直方图可知,消费群体对购车补贴金额的心理预期值的平均数的估计值为,所以方差的估计值为;(2)由频率分布直方图可知,消费群体对购车补贴金额的心理预期值高于3万元的频率为,则,所以的分布列为,数学期望;(3)将2018年11月至2019年3月的月份数依次编号为1,2,3,4,5,记,,,,,,由散点图可知,5组样本数据呈线性相关关系,因为,,,,则,,所以回归直线方程为,当时,,预计该品牌汽车在年月份的销售量约为2万辆.【点睛】本题考查平均数、方差的估计值、二项分布列及其期望、线性回归直线方程及其应用,是一个概率与统计的综合题,本题是一道中档题.21、(1).(2)【解析】
(1)先设等差数列{an}的公差为d(d>0),然后根据等差数列的通项公式及已知条件可列出关于d的方程,解出d的值,即可得到数列{an}的通项an;(2)先根据第(1)题的结果计算出数列{bn}的通项公式,然后运用错
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 住宅建筑与社区居民社区生活考核试卷
- 家电产品技术创新与专利申请考核试卷
- 拖拉机维修技术培训与认证考核试卷
- 交通管制设备人体工程学设计考核试卷
- 托儿所服务的个别化发展与差异教育考核试卷
- 环保科技在农业领域的应用与推广
- 塑料制品在环境治理中的应用考核试卷
- 初级茶艺师 模拟试题+答案
- 体育会展项目融资与投资决策分析考核试卷
- 宠物医疗援助与慈善工作考核试卷
- 2025年度有限责任公司拆伙协议书范本4篇
- 【8道期末】安徽省芜湖市2024-2025学年八年级上学期期末道德与法治试题(含解析)
- 2025中考关于名词的语法填空专练(二)(含答案)
- 3可伸缩的橡皮筋 说课稿-2023-2024学年科学二年级下册冀人版
- 班组现场5S与目视化管理
- 和达投资集团(杭州)有限公司招聘笔试冲刺题2025
- 政企单位春节元宵猜灯谜活动谜语200个(含谜底)
- 统编版2024-2025学年一年级上册期末语文素养评估卷(含答案)
- 专题15 机械振动与机械波(讲义)(解析版)-2024年高考二轮复习
- 养生馆拓客培训
- 《大学计算机基础》第2章计算机系统组成
评论
0/150
提交评论