




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
InternationalJournalofInfectiousDiseases148(2024)107167
Contentslistsavailableat
ScienceDirect
InternationalJournalofInfectiousDiseases
journalhomepage:
/locate/ijid
COVID-19increasedexistinggendermortalitygapsinhigh-incomemorethanmiddle-incomecountries
KathleenBeegle
1,*,
GabrielDemombynes
1,
DamiendeWalque
1,
PaulGubbins
2,
JeremyVeillard
3,#
1WorldBank,Washington,D.C.,USA
2Consultant,Chile
3WorldBank,Colombia
checkfor
updates
articleinfo
abstract
Articlehistory:
Received12April2024Revised27June2024Accepted3July2024
Objective:ToanalyzehowpatternsofexcessmortalityvariedbysexandagegroupsacrosscountriesduringtheCOVID-19pandemicandtheirassociationwithcountryincomelevel.
Methods:WeusedWorldHealthOrganizationexcessmortalityestimatesbysexandagegroupsfor75countriesin2020and62countriesin2021,restrictingthesampletoestimatesbasedonrecordedall-causemortalitydata.Weexaminedpatternsacrosscountriesusingcountry-specificPoissonregressionswithobservationsconsistingofthenumberofexcessdeathsbygroupsdefinedbysexandage.
Findings:Mendieathigherratesinnearlyallplacesandatallagesbeyondage45.In2020,thepan-demicamplifiedthisgendermortalitygapfortheworld,butwithvariationacrosscountriesandbycoun-tryincomelevel.Inhigh-incomecountries,ratesofexcessmortalityweremuchhigherformenthanwomen.Incontrast,inmiddle-incomecountries,thesexratioofexcessmortalitywassimilartothesexratioofexpectedall-causemortality.Theexacerbationofthesexratioofexcessmortalityobservedin2020inhigh-incomecountries,however,declinedin2021.
Conclusion:TheCOVID-19pandemichaskilledmenatmuchhigherratesthanwomen,ashasbeenwelldocumented,butthesegenderdifferenceshavevariedbycountryincome.Thesedifferencesweretheresultofsomecombinationofvariationingenderpatternsofinfectionratesandinfectionfatalityratesacrosscountries.Thegendergapinmortalitydeclinedinhigh-incomecountriesin2021,likelyasaresultofthefasterrolloutofvaccinationagainstCOVID-19.
©2024PublishedbyElsevierLtdonbehalfofInternationalSocietyforInfectiousDiseases.ThisisanopenaccessarticleundertheCCBY-NC-NDIGOlicense
(/licenses/by-nc-nd/3.0/igo/)
Keywords:
CoronavirusPandemic
DevelopingCountriesMortality
Gender
Introduction
Inallcountriesaroundtheworld,womenlivelongerthanmen
[1,2]
.Thereiswell-establishedevidenceofagendermortalitygapdrivenbyarangeofenvironmental,genetic,andculturalfactors
[3]
.Thepersistenceofhighermortalityformenthanwomenhasbeendocumentedwithdatatypicallydrawnprincipallyfromhigh-incomecountries
[4]
.Butthesepatternshavealsobeenshowninlow-incomeregionsoftheworld
[5]
.
*Correspondingauthor:KathleenBeegle,WorldBank,USA.E-mailaddress:
kbeegle@
(K.Beegle).
#Beegleisthecorrespondingauthor.Thefindings,interpretations,andconclu-sionsexpressedinthispaperareentirelythoseoftheauthors.Theydonotnec-essarilyrepresenttheviewsoftheWorldBankanditsaffiliatedorganizations,orthoseoftheExecutiveDirectorsoftheWorldBankorthegovernmentstheyrepre-sent.
Priortothe1950s,disproportionatelyhigherdeathsofmalethanfemaleinfantswerethemaindriverofthelongerlifeex-pectancyofwomen,butmorerecentlytheelevatedmortalityofoldermenhasdriventhegendergapinlifeexpectancy
[6]
.TheCOVID-19pandemicexacerbatedthisgapasage-standardizedex-cessdeathrateswerehigherformenthanwomeninmanycoun-tries
[7,8]
.Thesexinequalityinmortalitygrewinmanyhigh-incomecountriesduetoCOVID-19,thoughintheUS,thisdispar-ityhasbeencharacterizedasmodest,andmortalityfromthepan-demichasnotchangedthe“fundamentaldynamic”ofsexmor-talitygaps
[9]
.Likewise,forEuropeancountries,thedifferenceinmortalitybysexduringtheCOVID-19pandemicissimilartopre-pandemicpatterns
[10]
.Innon-high-incomesettings,bothCOVID-19andexcessdeathage-mortalitycurvesareflatter,onlyinpartduetopopulationstructure
[11]
.Thissuggeststhattheextenttowhichthegendergapinmortalityincreasedlikelydiffersacrosscountryincomelevels.Inpartduetothelackofdata,previous
/10.1016/j.ijid.2024.107167
1201-9712/©2024PublishedbyElsevierLtdonbehalfofInternationalSocietyforInfectiousDiseases.ThisisanopenaccessarticleundertheCCBY-NC-NDIGOlicense
(/licenses/by-nc-nd/3.0/igo/)
2
K.Beegle,G.Demombynes,D.deWalqueetal.InternationalJournalofInfectiousDiseases148(2024)107167
detailedanalysisofCOVID-19mortalitypatternsbyagehavecom-binedbothsexes,neglectingthiswell-establishedfactthatmortal-ityratesofmenarehigherthanthatofwomenandthatthismightvarybycountryincomelevel.
Thisstudydrawsonrecentdatathatwerenotavailableforearlierstudiestoexaminetheextenttowhichthegendergapinmortalityshiftedinhigh-andmiddle-incomecountriesduringtheCOVID-19pandemic.Unfortunately,underdevelopedcivilregistra-tionsystemsforreportingonmaleandfemaledeathslimitsdata
availabilityinlow-incomecountries,apersistentlimitationinthe
studyofglobalpopulation-levelmortalitypatterns.
Methods
Datasources
Weusethe“GlobalexcessdeathsassociatedwithCOVID-19(modelledestimates)”dataset(May19,2023update),producedbyWHO’sTechnicalAdvisoryGrouponCOVID-19mortalityassess-ment.Thisdatasetcontainsestimatesofexpectedall-causedeaths,all-causedeaths(actualorpredictedifactualwasnotavailable),andexcessdeathsbyagegroupandsexfor194countriesfor2020and2021.Expectedall-causedeathswereforecastedusinghistoriccountry-levelmonthlymortalitydatapriortothepandemicandserveasreferencepointintheabsenceofCOVID-19.Excessdeathswerecomputedas“themortalityabovewhatwouldbeexpectedbasedonthenon-crisismortalityrateinthepopulationofinterest”bydifferencingactual/predictedall-causedeathsfromexpectedall-causedeaths
[12]
.Thereisextensivedocumentationofthedataandmethodsappliedtogeneratetheseestimates
[13]
.
TheseestimatesarenotofdirectCOVID-19deathsonlybutratherareanestimateofthecombinationofdirectandindirectCOVID-19mortality,asmeasuredbyexcessdeaths.LackingactualmeasuresofdirectandindirectCOVID-19mortalitybysex,werelyonestimatesofexcessdeathsbysex.WecheckthereliabilityofthesedatabycomparingsexmortalityratiosfromtheestimateofexcessdeathsandthosefromreportedCOVID-19deathsforasub-setofcountriesforwhichthisisavailable.Thisratioofratiosisnotalways1.However,thereisnoclearpatternsuggestingthatthera-tiobasedonexcessdeathsisdifferentfromthatconstructedfromreportedCOVID-19mortality(notshownherebutavailableuponrequest).
ThisdatasetalsocontainspopulationcountsfromtheWorldPopulationProspectsbycountry,year,sex,andage
[8]
.Thedatasetcovers194countriesin2020and194in2021.Forthisanalysis,onlycountrieswithexcessdeathestimatesbasedonactualall-causedeath(notpredicted)bysexandagegroupareincluded.Thislimitsthesampleto75countriesin2020and62countriesin2021.Additionally,weexcludecountrieswithtotalexcessdeaths(bothsexescombined)below2000ineither2020or2021.After
applyingthesetwocriteria,wehave66countriesinthisanaly-
sis:54in2020and57in2021
.1
Lastly,weanalyzemortalitydataonlyforadults45yearsandolder,sinceexcessdeathratesareex-tremelylowforyoungerages.
1The66-countrysampleusedfromtheWHOGlobalExcessDeathsdatasetisdividedintothreeincometerciles.Incometercile1(GNIpercapitaPPPrange$5030-$15,530)includesAlbania,Azerbaijan,Bolivia(PlurinationalStateof),Brazil,Colombia,Cuba,Ecuador,Egypt,Georgia,Guatemala,Iran(IslamicRepublicof),Iraq,Kyrgyzstan,RepublicofMoldova,Mongolia,Nicaragua,Peru,Paraguay,SouthAfrica,Tunisia,Ukraine,andUzbekistan.Incometercile2(GNIpercapitaPPPrange$16,090-$33,730)includesArgentina,Bulgaria,BosniaandHerzegovina,Chile,CostaRica,DominicanRepublic,Greece,Croatia,Hungary,Kazakhstan,Latvia,MalaysiaMexico,Oman,Panama,Poland,Romania,RussianFederation,Serbia,Slovakia,Thai-land,andUruguay.Incometercile3(GNIpercapitaPPPrange$36,330-$70,150)includesAustralia,Austria,Belgium,Canada,Switzerland,Czechia,Germany,Spain,Estonia,Finland,France,TheUnitedKingdom,Israel,Italy,Japan,RepublicofKorea,Kuwait,Lithuania,Netherlands,Portugal,Sweden,andUSA.
Characterizingage-mortalitypatterns
Tocharacterizetheage-mortalitypatternsdrawingonthedatafrommultiplecountries,weestimateamodeloftheage-mortalitycurvewithinteractionsbysexforeachcountry.Therearethreereasonsforthismodelingasacomplementtoanalysisofthecoun-trymortalitydatadescribedabove.First,themodelproducesaslopeoftheage-mortalitycurvebysex.Second,itenablestheuseofpredictedvaluesforsomeestimatedquantitieswhichminimizetheinfluenceofoutliers.Andthird,wecanusethemodeltocom-puteconfidenceintervalsforcharacterizationoftheage-sexmor-talitypatternsforthesethreemortalityindicators.
Themodelsareestimatedseparatelyfor2020and2021byfit-tingaPoissonregressionusingdeathsastheresponsevariableandpopulationasanoffset.
Dx,s,i∼Poisson(ux,s,iθi)where
θi=exp(β0,i+β1,i×Male+β2,iAge+β3,i×Age×Male)
wheretheageandsex-specificnumberofdeathsisDx,s,iforthe10-yearagegroupagextoagex+9,x={45,55,65,75,85}forsexs={Male,Female}incountryi.Thex=85datapointscorre-spondtothegroupconsistingofallages85yearsandabove.Tointerpretdeathcountsasmortalityrates(fortheage-sex-specificpopulation),anexposuretermux,s,iwasintroducedasanoffsetinthemodelaslog(ux,s,i).Maleisabinaryvariablewhere1corre-spondstomenand0correspondstowomenandAgeisacontin-uousvariablecenteredatage65.Thecoefficientsexp(β0,i)repre-sentthemortalityrateforfemalesattheageof65years,exp(β1,i)representsthemale-to-femalemortalityrateratioattheageof65,exp(β2,i)representsthemortalityrateratioforfemalesthatdifferby10yearsinage,exp(β2,i+β3,i)representsthemortalityratera-tioformalesthatdifferby10yearsinage.ThePoissonregressionwasfitseparatelywithDx,s,idefinedintermsofexpectedall-causedeathsandwithDx,s,idefinedintermsofestimatedexcessdeathsforbothyears.Forthelatter,whenestimatedexcessdeathswerelessthan0,theywererecodedto0.
Oncetheparametersofeachcountrywereestimatedforex-pectedall-causeandexcessdeathsforbothyears,asimulation-basedinferencewasusedtogaugeuncertaintyaroundpredictedsexratiosofmortalityforeachcountryandagegroup.UsingtheclarifypackageforR,1000setsofcoefficientsweresimulatedfromtheirimplieddistributionafterfittingthemodeltothedata.Foreachcountry,thesesimulatedcoefficientswereusedtogeneratepredictionsofthemortalityrateformalesandfemalesforeachofthefiveagegroups,bycountryandyear.Takingtheratioofthesimulatedpredictedmortalityratesformalesandfemalesyieldedadistributionof1000predictedsexratiosofmortalityforeachagegroupthatcanbeusedforinferenceandgeneratinguncertaintybounds.
Results
Westartwithsomebriefdescriptivesofthedatawehaveavail-able.Themale-to-femaleratioofexpectedall-causemortalitybyagegroup(startingatage45)fornearlyeverycountryin2020isaboveone
(Figure1)
.Theloneexceptionsareamongsttheoldestagegroups(85+)inAlbaniaandBosniaandHerzegovina,alongwithages55-74inKuwait.Inalmostallcountries,thesexratiodeclinesstartingwiththe65-74agegrouporearlier.ThehandfulofcountrieswhichdonotfitthispatternareBolivia,Egypt,Iran,Kuwait,andNicaragua.Therangeonthesexratiogenerallystaysbetween1and2.Insum,amongthecountriesinthissample,atage50,menwerejustovertwiceaslikelytobeexpectedtodiefromallcausesthanwomen,onaverage,in2020.Thepatternof
3
K.Beegle,G.Demombynes,D.deWalqueetal.InternationalJournalofInfectiousDiseases148(2024)107167
Figure1.2020Expectedall-causemale-femalemortalityratio.Descriptionoftheillustration:2020Expectedall-causemale-femalemortalitybyagegroup(startingatage
45)andcountry.
thesexratioinmortalitybyagetendstotakeaninverseJ-shape.Theseresultsforall-causemortalityareconsistentwithevidencenotedearlierthatpre-datestheCOVID-19pandemic.
Thepatternofsexratioinexcessdeathsin2020byageisstillfavoringwomen
(Figure2
),butalsoshowsmuchmorevariationacrosscountriesascomparedtoagenerallyconsistentpatternwe
observeinexpectedall-causemortalityin
Figure1.
Thegeneralde-clineormildinverseJ-shapeseenin
Figure1
acrossallcountriesisnolongerpresent.Instead,weobserveawiderangeofdifferingpatterns,insomecasesaJshaperatherthananinverseJshape(suchasinIranandSouthAfrica).Populationsizemayalsofac-torintothewidevariationinpatternsinthesexratioofexcess
4
K.Beegle,G.Demombynes,D.deWalqueetal.InternationalJournalofInfectiousDiseases148(2024)107167
Figure2.2020Excessmale-femalemortalityratio.Descriptionoftheillustration:2020Excessmale-femalemortalityratiobyagegroup(startingatage45)andcountry.
deathssincesmallercountrieshaveworseP-scores(theratioofex-cessdeathstoexpecteddeaths)
[13]
.Overall,thegreatervariationinpatternsinthegenderratioforexcessdeathsascomparedtoexpectedall-causemortalitysuggestscountryvariationinCOVID-19sex-agemortalityrates.Inadditiontothepatternsdiffering,thescaleitselfismuchwider.Whereasbeforetheratiogenerallystayedbetween1and2,wenowhavesomeextremelyhighratios,
andahandfulofvaluesbelow1(andinafewcases,below0).Forexample,theexcessmortalitysexratioformenandwomeninGer-manyages65-74jumpsto30,whereasitisnegativeforGermanadults45-54years.Forboth45-54and55-64yearsolds,thesexratioisnegativeintheDominicanRepublicbutjumpstoover18for75-84and85+agegroups.Partofthisreflectsthesensitivityofratiosforsmallbase-valuecomparisons.Forexample,inHungary,
5
K.Beegle,G.Demombynes,D.deWalqueetal.InternationalJournalofInfectiousDiseases148(2024)107167
Figure3.Predictedmortalitysexratiobyagegroupandcountryincometercile.Descriptionoftheillustration:Predictedmortalitysexratiobyagegroupandcountryincometercile,withuncertaintybars.
theestimateofexcessdeathsforwomen45-54yearsoldis−3.3(effectively0),whereasformenitis126,resultinginaratioof−37.Similarly,intheDominicanRepublic,therewere14estimatedexcessdeathsforwomen85andolder,comparedto256formen,resultinginaratioof19.
DrawingonourPoissonestimates,
Table1
reportstheesti-matesoffourmeasures:femalemortalityatage65,male-femalemortalityratioatage65,andtheageslopeoffemaleandmalemortalityforanadditional10yearsofage.Theseareestimatedfor2020expectedall-causemortality,2020excessmortality,and2021excessmortality.
Table1
showsthepopulation-weightedre-sultsoverallandforeachofthreecountry-incometercilegroupings(population-weighted),aswellaseachcountryresult.
In2020,theaverageratioofmale-to-femalemortalityishigherforexcessdeaths(2.21)thanforexpectedall-causedeaths(1.69)(2020columns2androw1of
Table1
),andthisisalsothecaseforeachofthethreecountry-incometercilegroups.COVID-19am-plifiedthegendermortalitygap,atleastattheagepointof65,in2020.By2021,thesexratioofexcessdeathshasfallen(to1.84)butisstillabovethesexratioforexpectedall-causemortalityin2020(1.69).However,acrossincometercilesthereisvariation.Inthelowestincomegrouping,theexcessmortalitysexratioin2021isslightlylowerthanforexpectedall-cause2020,whereasinthehigh-incomecountries,itremainswellabove(2.23in2021and2.3in2020comparedto1.71forexpectedall-causedeathsin2020).
Theslopeofthecurveofmortalitybyage(thechangeinmortalityassociatedwithanadditional10yearsofage)goesup
sharplyfromexpectedall-causetoexcessdeathsforbothwomen
(from2.95to3.46)andformen(2.49-2.89)in2020.Andthisslopeisgreaterforwomenthanmen,asisexpectedgiventhehighermortalityratesatyoungeragesformeninexcessdeathsin2020.(Thesexratioofmortalityatage65isnecessarilylinkedtotheage-slopeofmortalityforwomenandmen.)Thesepatternsinex-cessmortalityshiftremarkablyby2021.By2021,theageslopeofmortalityshowsmuchlessofagap;itisrelativelysimilarforwomen(2.40)andformen(2.33).Thisshort-livedpatternsug-geststhatCOVID-19maynothavelong-lastingimplicationsforthegendergapinmortalityinhigh-incomecountries,aswasobserved
withthe1918influenzaepidemic(whereaselectioneffectresultedinadecreaseinthegendergapinmortalityinyearsfollowingthatepidemic)
[14]
.But,totheextentthatolderpersondeathswerees-peciallydisplacedinthefirst2yearsofCOVID-19,mortalityrisksmaydeclinemoreforhardesthitgroupsinsubsequentyears
[15]
.
Notably,thispatterninexcessdeathsage-slopesdiffersacrossourcountry-incometercilesin2020.Theageslopeofmortalityishighestforwomeninhigh-incomecountriesfor2020(bothex-pectedall-causedeathsandexcessdeaths),butitfallsdramati-callyby2021whenitisslightlylowerthanthatofmen(2.40forwomenand2.49formen).Ontheotherhand,incountriesinthefirstandsecondterciles,in2021,theageslopeinmortalityre-mainsslightlyhigherforwomen.
Alastpointofnoteisthatfemaleexcessmortalityatage65increasesdramatically(almostdoubles)forcountriesinthefirstandsecondtercilesfrom2020to2021(from447to832forter-cile1countries,andfrom439to824fortercile2countries),whereasitincreasesmuchmoremodestlyfrom2020to2021forthehigh-incomecountriesintercile3(from131to149).Anotherwaytoviewthepatternsbyage,sex,andcountry,istoexaminethemortalitysexratio(M/F)forcountriesbytercileofGNIpercapita,asshownin
Figure3.
Thesefiguresshowthatthewiden-ingofthegendermortalitygapdrivenbyCOVID-19in2020waslimitedtohigher-incomecountriesandprincipallyamongadultsages45-54and55-65.
Figure4
displaysthesamedatawithin-dividualcountrypoints.Thepatternsshowndonotchangesub-stantivelywhenusingthesubsetofcountriesheldconstantacrossyears.
Discussion
Thisarticle,usingaglobaldatasetcoveringawideswathofmiddle-andhigh-incomecountries,confirmspreviousfindings,basedonmorelimiteddata,thatforallagegroupsaboveage45andinallcountrieswithfewexceptions,mendieathigherratesthanwomen.ItalsoidentifiesglobalvariationinpatternsofCOVID-19mortalitybyageandsex.Thefindingscomplementpre-viousfindings
[10]
showingthattheagecurveofexcessdeaths
6
K.Beegle,G.Demombynes,D.deWalqueetal.InternationalJournalofInfectiousDiseases148(2024)107167
Table1
Mortalityratesbyage,sex,andcountrydescriptionofthetable:descriptionoftheillustration:Countryregressionestimatesdescribinghowmortalityratesvarybyageandsex.
7
K.Beegle,G.Demombynes,D.deWalqueetal.InternationalJournalofInfectiousDiseases148(2024)107167
Figure4.PredictedmortalitysexratiobyagegroupandcountryGNIpercap.Descriptionoftheillustration:PredictedmortalitysexratiowithindividualcountrydatapointsbyagegroupandcountryGNIpercapita,withuncertaintybars.
in2020wasflatterformiddle-incomecountriesandsteeperinwealthiercountries.Thefindingsinthisarticledemonstratethatthisdifferenceisprincipallydrivenbythemortalitypatternsofmen,resultinginCOVID-19amplifyingthegendermortalitygapin2020moreinrichercountriesascomparedtoless-wealthycoun-tries.
Animportantlimitationofthisstudyisthatbecauseitexcludesexcessmortalityestimatesnotbasedonactualobservedmortality,itdoesnotincludeanylow-incomecountries.Suchcountrieshavemortalitypatternsthataredistinctfromthoseinmiddleandhigh-incomeeconomies,notablywell-documenteddifferingchronicandinfectiousdiseasepatternsasmajordriversofmortality.Datashowclustersofcountriesintomortality“convergenceclubs”markedbybothgeographicregionandincomelevel
[16]
.InthecontextofCOVID-19,infectionfatalityratesaresignificantlyhigherinlow-incomecountriesthanhigh-incomesettings
[17]
.Meanwhile,thegendergapinlifeexpectancybetweenwomenandmenwidensascountryincomelevelincreases
[18
],thoughfatalityratesfromCOVID-19arehigherformenthanwomeninlow-incomecoun-triesinAfrica,ashasbeenshowninotherpartsoftheworld
[19]
.Takentogether,thesepointsaresuggestivethattheexac-erbationofthegendergapinhigh-incomerelativetomiddle-incomesettingswouldextendtoacomparisonwithlow-incomecontexts.
Overall,thesefindingspointtotheneedtoconsiderpublicpoliciesduringpublichealthemergenciesthatoffermoretar-getedprotectionforcertaingroups,inthiscase,menover45withco-morbidities,suchasgreatereffortstotargetinterven-tionstothoseworkinginjobsexposingthemtoahigherriskofinfections.
Thepatternsfoundwillhopefullyinspirefuturecountry-levelresearchusingcause-of-deathdatatogetafullerunderstandingofrelevantdriversofage-gendermortalitypatterns,whicharebothbiologicalandsocial.Itisworthwhiletoexplorestructuralsocioe-conomicconditionsthatvarywithcountryincomeandsex,whichwouldalsointeractwithbothinfectionexposureandfatalityrates.Thiswouldinclude,forexample,thestructureofjobsandem-ploymentpatterns(welldocumentedtovarybycountryincomeandsex),especiallytheextentofremoteworkopportunitieswhichmayreduceexposuretoinfectionsduringapandemic.Anotherex-ampleistheextentofresidencyinlong-termcarefacilities.Olderpersons,especiallyolderwomen,havehigherlikelihoodsofresid-inginnursinghomesinwealthiercountriesthanlower-incomesettings.Whenthesefacilitiesareofpoorqualityandsafetytheyresultingreaterexposure
[20]
.Athirdareacouldbethepro-fileofco-morbiditiespre-existinginthepopulation.Forexample,womenarerelativelymoreobesethanmeninlowandmiddle-incomeeconomiesbutnotinhigh-incomecountries
[21]
.Specific
8
K.Beegle,G.Demombynes,D.deWalqueetal.
toCOVID-19,thereisevidencethatwomenaremorelikelytogetdiagnosedthanmeninhigh-incomecontexts
[22
],butthismaybelesslikelyinmiddleandlow-incomesettingswheregendergapsinaccesstohealthcarearearguablygreaterthanforhigh-incomesettings
[20].
Lastly,theanalysisinthisarticleisalsoareminderofthevalueofdemographicdataandthevalueofeffortsbycountrygovern-mentsandinternationalorganizationstopromoteandstandardizevitalstatisticsdata.
Declarationsofcompetinginterest
Theauthorshavenocompetinginterestsorconflictofinteresttodeclare.
Funding
ThisworkwassupportedbytheWorldBankResearchSupportBudget.
Ethicalapproval
Thisworkusespubli
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 工程设计合同合同
- 南海水投格式合同8篇
- 项目策划与实施流程详解文档
- 2025个人数据隐私保护管理规范
- 2025年商洛货运资格证模拟考试新题库
- 养马场青贮采购合同
- 环保产业污染防治措施方案
- 工程制图与绘图作业指导书
- 2025年安徽货运从业资格证考试题目及答案解析
- 《数据可视化技术应用》4.1 理解数据分析报告要点- 教案
- 人工智能赋能教师数字素养提升
- 房地产估价培训
- 2024年度智慧城市建设综合解决方案投标书实例3篇
- TDT1055-2019第三次全国国土调查技术规程
- 2021年河南公务员行测考试真题及答案
- 单晶炉车间安全培训
- 英语演讲技巧与实训学习通超星期末考试答案章节答案2024年
- 机械制造技术基础(课程课件完整版)
- 2024年海南省公务员录用考试《行测》试题及答案解析
- 《预防未成年人犯罪》课件(图文)
- 九年级化学人教版跨学科实践3水质检测及自制净水器教学设计
评论
0/150
提交评论