江苏省宜兴市宜城环科园教联盟2024届初中数学毕业考试模拟冲刺卷含解析_第1页
江苏省宜兴市宜城环科园教联盟2024届初中数学毕业考试模拟冲刺卷含解析_第2页
江苏省宜兴市宜城环科园教联盟2024届初中数学毕业考试模拟冲刺卷含解析_第3页
江苏省宜兴市宜城环科园教联盟2024届初中数学毕业考试模拟冲刺卷含解析_第4页
江苏省宜兴市宜城环科园教联盟2024届初中数学毕业考试模拟冲刺卷含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江苏省宜兴市宜城环科园教联盟2024届初中数学毕业考试模拟冲刺卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是()A. B. C. D.2.下列各图中,既可经过平移,又可经过旋转,由图形①得到图形②的是()A. B. C. D.3.在同一平面内,下列说法:①过两点有且只有一条直线;②两条不相同的直线有且只有一个公共点;③经过直线外一点有且只有一条直线与已知直线垂直;④经过直线外一点有且只有一条直线与已知直线平行,其中正确的个数为(

)A.1个 B.2个 C.3个 D.4个4.函数y=自变量x的取值范围是()A.x≥1 B.x≥1且x≠3 C.x≠3 D.1≤x≤35.如图,内接于,若,则A. B. C. D.6.下列计算正确的是()A.a²+a²=a4 B.(-a2)3=a6C.(a+1)2=a2+1 D.8ab2÷(-2ab)=-4b7.下列计算正确的是()A.+= B.﹣= C.×=6 D.=48.如图,A、B为⊙O上两点,D为弧AB的中点,C在弧AD上,且∠ACB=120°,DE⊥BC于E,若AC=DE,则的值为()A.3 B. C. D.9.如图1,在△ABC中,AB=BC,AC=m,D,E分别是AB,BC边的中点,点P为AC边上的一个动点,连接PD,PB,PE.设AP=x,图1中某条线段长为y,若表示y与x的函数关系的图象大致如图2所示,则这条线段可能是()A.PD B.PB C.PE D.PC10.已知电流I(安培)、电压U(伏特)、电阻R(欧姆)之间的关系为,当电压为定值时,I关于R的函数图象是()A. B. C. D.二、填空题(共7小题,每小题3分,满分21分)11.如图是利用直尺和三角板过已知直线l外一点P作直线l的平行线的方法,其理由是__________.12.规定:[x]表示不大于x的最大整数,(x)表示不小于x的最小整数,[x)表示最接近x的整数(x≠n+0.5,n为整数),例如:[1.3]=1,(1.3)=3,[1.3)=1.则下列说法正确的是________.(写出所有正确说法的序号)①当x=1.7时,[x]+(x)+[x)=6;②当x=﹣1.1时,[x]+(x)+[x)=﹣7;③方程4[x]+3(x)+[x)=11的解为1<x<1.5;④当﹣1<x<1时,函数y=[x]+(x)+x的图象与正比例函数y=4x的图象有两个交点.13.如图,抛物线y=ax2+bx+c与x轴相交于A、B两点,点A在点B左侧,顶点在折线M﹣P﹣N上移动,它们的坐标分别为M(﹣1,4)、P(3,4)、N(3,1).若在抛物线移动过程中,点A横坐标的最小值为﹣3,则a﹣b+c的最小值是_____.14.如图,CE是▱ABCD的边AB的垂直平分线,垂足为点O,CE与DA的延长线交于点E.连接AC,BE,DO,DO与AC交于点F,则下列结论:①四边形ACBE是菱形;②∠ACD=∠BAE;③AF:BE=2:1;④S四边形AFOE:S△COD=2:1.其中正确的结论有_____.(填写所有正确结论的序号)15.如图,10块相同的小长方形墙砖拼成一个大长方形,设小长方形墙砖的长和宽分别为x厘米和y厘米,则列出的方程组为_____.16.计算×3结果等于_____.17.8的立方根为_______.三、解答题(共7小题,满分69分)18.(10分)(操作发现)(1)如图1,△ABC为等边三角形,先将三角板中的60°角与∠ACB重合,再将三角板绕点C按顺时针方向旋转(旋转角大于0°且小于30°),旋转后三角板的一直角边与AB交于点D,在三角板斜边上取一点F,使CF=CD,线段AB上取点E,使∠DCE=30°,连接AF,EF.①求∠EAF的度数;②DE与EF相等吗?请说明理由;(类比探究)(2)如图2,△ABC为等腰直角三角形,∠ACB=90°,先将三角板的90°角与∠ACB重合,再将三角板绕点C按顺时针方向旋转(旋转角大于0°且小于45°),旋转后三角板的一直角边与AB交于点D,在三角板另一直角边上取一点F,使CF=CD,线段AB上取点E,使∠DCE=45°,连接AF,EF.请直接写出探究结果:①∠EAF的度数;②线段AE,ED,DB之间的数量关系.19.(5分)某校对学生就“食品安全知识”进行了抽样调查(每人选填一类),绘制了如图所示的两幅统计图(不完整)。请根据图中信息,解答下列问题:(1)根据图中数据,求出扇形统计图中的值,并补全条形统计图。(2)该校共有学生900人,估计该校学生对“食品安全知识”非常了解的人数.20.(8分)如图,矩形OABC的顶点A、C分别在x、y轴的正半轴上,点D为BC边上的点,AB=BD,反比例函数在第一象限内的图象经过点D(m,2)和AB边上的点E(n,).(1)求m、n的值和反比例函数的表达式.(2)将矩形OABC的一角折叠,使点O与点D重合,折痕分别与x轴,y轴正半轴交于点F,G,求线段FG的长.21.(10分)已知线段a及如图形状的图案.(1)用直尺和圆规作出图中的图案,要求所作图案中圆的半径为a(保留作图痕迹)(2)当a=6时,求图案中阴影部分正六边形的面积.22.(10分)小明、小刚和小红打算各自随机选择本周日的上午或下午去扬州马可波罗花世界游玩.小明和小刚都在本周日上午去游玩的概率为________;求他们三人在同一个半天去游玩的概率.23.(12分)如图,圆O是的外接圆,AE平分交圆O于点E,交BC于点D,过点E作直线.(1)判断直线l与圆O的关系,并说明理由;(2)若的平分线BF交AD于点F,求证:;(3)在(2)的条件下,若,,求AF的长.24.(14分)如图,在中,AB=AC,,点D是BC的中点,DE⊥AB于点E,DF⊥AC于点F.(1)∠EDB=_____(用含的式子表示)(2)作射线DM与边AB交于点M,射线DM绕点D顺时针旋转,与AC边交于点N.①根据条件补全图形;②写出DM与DN的数量关系并证明;③用等式表示线段BM、CN与BC之间的数量关系,(用含的锐角三角函数表示)并写出解题思路.

参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、A【解析】

根据轴对称图形的概念判断即可.【详解】A、是轴对称图形;B、不是轴对称图形;C、不是轴对称图形;D、不是轴对称图形.故选:A.【点睛】本题考查的是轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2、D【解析】A,B,C只能通过旋转得到,D既可经过平移,又可经过旋转得到,故选D.3、C【解析】

根据直线的性质公理,相交线的定义,垂线的性质,平行公理对各小题分析判断后即可得解.【详解】解:在同一平面内,①过两点有且只有一条直线,故①正确;②两条不相同的直线相交有且只有一个公共点,平行没有公共点,故②错误;③在同一平面内,经过直线外一点有且只有一条直线与已知直线垂直,故③正确;④经过直线外一点有且只有一条直线与已知直线平行,故④正确,综上所述,正确的有①③④共3个,故选C.【点睛】本题考查了平行公理,直线的性质,垂线的性质,以及相交线的定义,是基础概念题,熟记概念是解题的关键.4、B【解析】由题意得,x-1≥0且x-3≠0,∴x≥1且x≠3.故选B.5、B【解析】

根据圆周角定理求出,根据三角形内角和定理计算即可.【详解】解:由圆周角定理得,,,,故选:B.【点睛】本题考查的是三角形的外接圆与外心,掌握圆周角定理、等腰三角形的性质、三角形内角和定理是解题的关键.6、D【解析】

各项计算得到结果,即可作出判断.【详解】A、原式=2a2,不符合题意;B、原式=-a6,不符合题意;C、原式=a2+2ab+b2,不符合题意;D、原式=-4b,符合题意,故选:D.【点睛】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.7、B【解析】

根据同类二次根式才能合并可对A进行判断;根据二次根式的乘法对B进行判断;先把化为最简二次根式,然后进行合并,即可对C进行判断;根据二次根式的除法对D进行判断.【详解】解:A、与不能合并,所以A选项不正确;B、-=2−=,所以B选项正确;C、×=,所以C选项不正确;D、=÷=2÷=2,所以D选项不正确.故选B.【点睛】此题考查二次根式的混合运算,注意先化简,再进一步利用计算公式和计算方法计算.8、C【解析】

连接D为弧AB的中点,根据弧,弦的关系可知,AD=BD,根据圆周角定理可得:在BC上截取,连接DF,则≌,根据全等三角形的性质可得:即根据等腰三角形的性质可得:设则即可求出的值.【详解】如图:连接D为弧AB的中点,根据弧,弦的关系可知,AD=BD,根据圆周角定理可得:在BC上截取,连接DF,则≌,即根据等腰三角形的性质可得:设则故选C.【点睛】考查弧,弦之间的关系,全等三角形的判定与性质,等腰三角形的性质,锐角三角函数等,综合性比较强,关键是构造全等三角形.9、C【解析】观察可得,点P在线段AC上由A到C的运动中,线段PE逐渐变短,当EP⊥AC时,PE最短,过垂直这个点后,PE又逐渐变长,当AP=m时,点P停止运动,符合图像的只有线段PE,故选C.点睛:本题考查了动点问题的函数图象,对于此类问题来说是典型的数形结合,图象应用信息广泛,通过看图获取信息,不仅可以解决生活中的实际问题,还可以提高分析问题、解决问题的能力.用图象解决问题时,要理清图象的含义即会识图.10、C【解析】

根据反比例函数的图像性质进行判断.【详解】解:∵,电压为定值,∴I关于R的函数是反比例函数,且图象在第一象限,故选C.【点睛】本题考查反比例函数的图像,掌握图像性质是解题关键.二、填空题(共7小题,每小题3分,满分21分)11、同位角相等,两直线平行.【解析】试题解析:利用三角板中两个60°相等,可判定平行考点:平行线的判定12、②③【解析】试题解析:①当x=1.7时,[x]+(x)+[x)=[1.7]+(1.7)+[1.7)=1+1+1=5,故①错误;②当x=﹣1.1时,[x]+(x)+[x)=[﹣1.1]+(﹣1.1)+[﹣1.1)=(﹣3)+(﹣1)+(﹣1)=﹣7,故②正确;③当1<x<1.5时,4[x]+3(x)+[x)=4×1+3×1+1=4+6+1=11,故③正确;④∵﹣1<x<1时,∴当﹣1<x<﹣0.5时,y=[x]+(x)+x=﹣1+0+x=x﹣1,当﹣0.5<x<0时,y=[x]+(x)+x=﹣1+0+x=x﹣1,当x=0时,y=[x]+(x)+x=0+0+0=0,当0<x<0.5时,y=[x]+(x)+x=0+1+x=x+1,当0.5<x<1时,y=[x]+(x)+x=0+1+x=x+1,∵y=4x,则x﹣1=4x时,得x=;x+1=4x时,得x=;当x=0时,y=4x=0,∴当﹣1<x<1时,函数y=[x]+(x)+x的图象与正比例函数y=4x的图象有三个交点,故④错误,故答案为②③.考点:1.两条直线相交或平行问题;1.有理数大小比较;3.解一元一次不等式组.13、﹣1.【解析】

由题意得:当顶点在M处,点A横坐标为-3,可以求出抛物线的a值;当顶点在N处时,y=a-b+c取得最小值,即可求解.【详解】解:由题意得:当顶点在M处,点A横坐标为-3,则抛物线的表达式为:y=a(x+1)2+4,将点A坐标(-3,0)代入上式得:0=a(-3+1)2+4,解得:a=-1,当x=-1时,y=a-b+c,顶点在N处时,y=a-b+c取得最小值,顶点在N处,抛物线的表达式为:y=-(x-3)2+1,当x=-1时,y=a-b+c=-(-1-3)2+1=-1,故答案为-1.【点睛】本题考查的是二次函数知识的综合运用,本题的核心是确定顶点在M、N处函数表达式,其中函数的a值始终不变.14、①②④.【解析】

根据菱形的判定方法、平行线分线段成比例定理、直角三角形斜边中线的性质一一判断即可.【详解】∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∵EC垂直平分AB,∴OA=OB=AB=DC,CD⊥CE,∵OA∥DC,∴=,∴AE=AD,OE=OC,∵OA=OB,OE=OC,∴四边形ACBE是平行四边形,∵AB⊥EC,∴四边形ACBE是菱形,故①正确,∵∠DCE=90°,DA=AE,∴AC=AD=AE,∴∠ACD=∠ADC=∠BAE,故②正确,∵OA∥CD,∴,∴,故③错误,设△AOF的面积为a,则△OFC的面积为2a,△CDF的面积为4a,△AOC的面积=△AOE的面积=1a,∴四边形AFOE的面积为4a,△ODC的面积为6a∴S四边形AFOE:S△COD=2:1.故④正确.故答案是:①②④.【点睛】此题考查平行四边形的性质、菱形的判定和性质、平行线分线段成比例定理、等高模型等知识,解题的关键是灵活运用所学知识解决问题,学会利用参数解决问题.15、【解析】

根据图示可得:长方形的长可以表示为x+2y,长又是75厘米,故x+2y=75,长方形的宽可以表示为2x,或x+3y,故2x=3y+x,整理得x=3y,联立两个方程即可.【详解】根据图示可得,故答案是:.【点睛】此题主要考查了由实际问题抽象出二元一次方程组,关键是看懂图示,分别表示出长方形的长和宽.16、1【解析】

根据二次根式的乘法法则进行计算即可.【详解】故答案为:1.【点睛】考查二次根式的乘法,掌握二次根式乘法的运算法则是解题的关键.17、2.【解析】

根据立方根的定义可得8的立方根为2.【点睛】本题考查了立方根.三、解答题(共7小题,满分69分)18、(1)①110°②DE=EF;(1)①90°②AE1+DB1=DE1【解析】试题分析:(1)①由等边三角形的性质得出AC=BC,∠BAC=∠B=60°,求出∠ACF=∠BCD,证明△ACF≌△BCD,得出∠CAF=∠B=60°,求出∠EAF=∠BAC+∠CAF=110°;②证出∠DCE=∠FCE,由SAS证明△DCE≌△FCE,得出DE=EF即可;(1)①由等腰直角三角形的性质得出AC=BC,∠BAC=∠B=45°,证出∠ACF=∠BCD,由SAS证明△ACF≌△BCD,得出∠CAF=∠B=45°,AF=DB,求出∠EAF=∠BAC+∠CAF=90°;②证出∠DCE=∠FCE,由SAS证明△DCE≌△FCE,得出DE=EF;在Rt△AEF中,由勾股定理得出AE1+AF1=EF1,即可得出结论.试题解析:解:(1)①∵△ABC是等边三角形,∴AC=BC,∠BAC=∠B=60°.∵∠DCF=60°,∴∠ACF=∠BCD.在△ACF和△BCD中,∵AC=BC,∠ACF=∠BCD,CF=CD,∴△ACF≌△BCD(SAS),∴∠CAF=∠B=60°,∴∠EAF=∠BAC+∠CAF=110°;②DE=EF.理由如下:∵∠DCF=60°,∠DCE=30°,∴∠FCE=60°﹣30°=30°,∴∠DCE=∠FCE.在△DCE和△FCE中,∵CD=CF,∠DCE=∠FCE,CE=CE,∴△DCE≌△FCE(SAS),∴DE=EF;(1)①∵△ABC是等腰直角三角形,∠ACB=90°,∴AC=BC,∠BAC=∠B=45°.∵∠DCF=90°,∴∠ACF=∠BCD.在△ACF和△BCD中,∵AC=BC,∠ACF=∠BCD,CF=CD,∴△ACF≌△BCD(SAS),∴∠CAF=∠B=45°,AF=DB,∴∠EAF=∠BAC+∠CAF=90°;②AE1+DB1=DE1,理由如下:∵∠DCF=90°,∠DCE=45°,∴∠FCE=90°﹣45°=45°,∴∠DCE=∠FCE.在△DCE和△FCE中,∵CD=CF,∠DCE=∠FCE,CE=CE,∴△DCE≌△FCE(SAS),∴DE=EF.在Rt△AEF中,AE1+AF1=EF1,又∵AF=DB,∴AE1+DB1=DE1.19、(1),补全条形统计图见解析;(2)该校学生对“食品安全知识”非常了解的人数为135人。【解析】试题分析:(1)由统计图中的信息可知,B组学生有32人,占总数的40%,由此可得被抽查学生总人数为:32÷40%=80(人),结合C组学生有28人可得:m%=28÷80×100%=35%,由此可得m=35;由80-32-28-8=12(人)可知A组由12人,由此即可补全条形统计图了;(2)由(1)中计算可知,A组有12名学生,占总数的12÷80×100%=15%,结合全校总人数为900可得900×15%=135(人),即全校“非常了解”“食品安全知识”的有135人.试题解析:(1)由已知条件可得:被抽查学生总数为32÷40%=80(人),∴m%=28÷80×100%=35%,∴m=35,A组人数为:80-32-28-8=12(人),将图形统计图补充完整如下图所示:(2)由题意可得:900×(12÷80×100%)=900×15%=135(人).答:全校学生对“食品安全知识”非常了解的人数为135人.20、(1)y=;(2).【解析】

(1)根据题意得出,解方程即可求得m、n的值,然后根据待定系数法即可求得反比例函数的解析式;(2)设OG=x,则GD=OG=x,CG=2﹣x,根据勾股定理得出关于x的方程,解方程即可求得DG的长,过F点作FH⊥CB于H,易证得△GCD∽△DHF,根据相似三角形的性质求得FG,最后根据勾股定理即可求得.【详解】(1)∵D(m,2),E(n,),∴AB=BD=2,∴m=n﹣2,∴,解得,∴D(1,2),∴k=2,∴反比例函数的表达式为y=;(2)设OG=x,则GD=OG=x,CG=2﹣x,在Rt△CDG中,x2=(2﹣x)2+12,解得x=,过F点作FH⊥CB于H,∵∠GDF=90°,∴∠CDG+∠FDH=90°,∵∠CDG+∠CGD=90°,∴∠CGD=∠FDH,∵∠GCD=∠FHD=90°,∴△GCD∽△DHF,∴,即,∴FD=,∴FG=.【点睛】本题考查了反比例函数与几何综合题,涉及了待定系数法、勾股定理、相似三角形的判定与性质等,熟练掌握待定系数法、相似三角形的判定与性质是解题的关键.21、(1)如图所示见解析,(2)当半径为6时,该正六边形的面积为【解析】试题分析:(1)先画一半径为a的圆,再作所画圆的六等分点,如图所示,连接所得六等分点,作出两个等边三角形即可;(2)如下图,连接OA、OB、OC、OD,作OE⊥AB于点E,由已知条件先求出AB和OE的长,再求出CD的长,即可求得△OCD的面积,这样即可由S阴影=6S△OCD求出阴影部分的面积了.试题解析:(1)所作图形如下图所示:(2)如下图,连接OA、OB、OC、OD,作OE⊥AB于点E,则由题意可得:OA=OB=6,∠AOB=120°,∠OEB=90°,AE=BE,△BOC,△AOD都是等腰三角形,△OCD的三边三角形,∴∠ABO=30°,BC=OC=CD=AD,∴BE=OB·cos30°=,OE=3,∴AB=,∴CD=,∴S△OCD=,∴S阴影=6S△OCD=.22、(1);(2)【解析】

(1)根据题意,画树状图列出三人随机选择上午或下午去游玩的所有等可能结果,找到小明和小刚都在本周日上午去游玩的结果,根据概率公式计算可得;(2)由(1)中树状图,找到三人在同一个半天去游玩的结果,根据概率公式计算可得.【详解】解:(1)根据题意,画树状图如图:由树状图可知,三人随机选择本周日的上午或下午去游玩共有8种等可能结果,其中小明和小刚都在本周日上午去游玩的结果有(上,上,上)、(上,上,下)2种,∴小明和小刚都在本周日上午去游玩的概率为=;(2)由(1)中树状图可知,他们三人在同一个半天去游玩的结果有(上,上,上)、(下,下,下)这2种,∴他们三人在同一个半天去游玩的概率为=.答:他们三人在同一个半天去游玩的概率是.【点睛】本题考查的是用列表法或树状图法求概率.注意列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件.23、(1)直线l与相切,见解析;(2)见解析;(3)AF=.【解析】

连接由题意可证明,于是得到,由等腰三角形三线合一的性质可证明,于是可证明,故此可证明直线l与相切;先由角平分线的定义可知,然后再证明,于是可得到

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论