![2025届辽宁省盘锦市重点中学高考数学考前最后一卷预测卷含解析_第1页](http://file4.renrendoc.com/view12/M07/38/2F/wKhkGWdDcsWACUoyAAK_9neH1jg913.jpg)
![2025届辽宁省盘锦市重点中学高考数学考前最后一卷预测卷含解析_第2页](http://file4.renrendoc.com/view12/M07/38/2F/wKhkGWdDcsWACUoyAAK_9neH1jg9132.jpg)
![2025届辽宁省盘锦市重点中学高考数学考前最后一卷预测卷含解析_第3页](http://file4.renrendoc.com/view12/M07/38/2F/wKhkGWdDcsWACUoyAAK_9neH1jg9133.jpg)
![2025届辽宁省盘锦市重点中学高考数学考前最后一卷预测卷含解析_第4页](http://file4.renrendoc.com/view12/M07/38/2F/wKhkGWdDcsWACUoyAAK_9neH1jg9134.jpg)
![2025届辽宁省盘锦市重点中学高考数学考前最后一卷预测卷含解析_第5页](http://file4.renrendoc.com/view12/M07/38/2F/wKhkGWdDcsWACUoyAAK_9neH1jg9135.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届辽宁省盘锦市重点中学高考数学考前最后一卷预测卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.第七届世界军人运动会于2019年10月18日至27日在中国武汉举行,中国队以133金64银42铜位居金牌榜和奖牌榜的首位.运动会期间有甲、乙等五名志愿者被分配到射击、田径、篮球、游泳四个运动场地提供服务,要求每个人都要被派出去提供服务,且每个场地都要有志愿者服务,则甲和乙恰好在同一组的概率是()A. B. C. D.2.生活中人们常用“通五经贯六艺”形容一个人才识技艺过人,这里的“六艺”其实源于中国周朝的贵族教育体系,具体包括“礼、乐、射、御、书、数”.为弘扬中国传统文化,某校在周末学生业余兴趣活动中开展了“六艺”知识讲座,每艺安排一节,连排六节,则满足“数”必须排在前两节,“礼”和“乐”必须分开安排的概率为()A. B. C. D.3.若变量,满足,则的最大值为()A.3 B.2 C. D.104.已知双曲线,过原点作一条倾斜角为直线分别交双曲线左、右两支P,Q两点,以线段PQ为直径的圆过右焦点F,则双曲线离心率为A. B. C.2 D.5.执行下面的程序框图,则输出的值为()A. B. C. D.6.设为的两个零点,且的最小值为1,则()A. B. C. D.7.已知集合,则元素个数为()A.1 B.2 C.3 D.48.已知函数的图象如图所示,则可以为()A. B. C. D.9.在中,点为中点,过点的直线与,所在直线分别交于点,,若,,则的最小值为()A. B.2 C.3 D.10.甲、乙两名学生的六次数学测验成绩(百分制)的茎叶图如图所示.①甲同学成绩的中位数大于乙同学成绩的中位数;②甲同学的平均分比乙同学的平均分高;③甲同学的平均分比乙同学的平均分低;④甲同学成绩的方差小于乙同学成绩的方差.以上说法正确的是()A.③④ B.①② C.②④ D.①③④11.中国古代中的“礼、乐、射、御、书、数”合称“六艺”.“礼”,主要指德育;“乐”,主要指美育;“射”和“御”,就是体育和劳动;“书”,指各种历史文化知识;“数”,数学.某校国学社团开展“六艺”课程讲座活动,每艺安排一节,连排六节,一天课程讲座排课有如下要求:“乐”不排在第一节,“射”和“御”两门课程不相邻,则“六艺”课程讲座不同的排课顺序共有()种.A.408 B.120 C.156 D.24012.命题:存在实数,对任意实数,使得恒成立;:,为奇函数,则下列命题是真命题的是()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.若复数z满足,其中i是虚数单位,则z的模是______.14.已知直线与圆心为的圆相交于两点,且,则实数的值为_________.15.某种赌博每局的规则是:赌客先在标记有1,2,3,4,5的卡片中随机摸取一张,将卡片上的数字作为其赌金;随后放回该卡片,再随机摸取两张,将这两张卡片上数字之差的绝对值的1.4倍作为其奖金.若随机变量ξ1和ξ2分别表示赌客在一局赌博中的赌金和奖金,则D(ξ1)=_____,E(ξ1)﹣E(ξ2)=_____.16.若展开式的二项式系数之和为64,则展开式各项系数和为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数.(1)当时,解不等式;(2)当时,不等式恒成立,求实数的取值范围.18.(12分)已知椭圆,点为半圆上一动点,若过作椭圆的两切线分别交轴于、两点.(1)求证:;(2)当时,求的取值范围.19.(12分)如图在直角中,为直角,,,分别为,的中点,将沿折起,使点到达点的位置,连接,,为的中点.(Ⅰ)证明:面;(Ⅱ)若,求二面角的余弦值.20.(12分)设函数,().(1)若曲线在点处的切线方程为,求实数a、m的值;(2)若对任意恒成立,求实数a的取值范围;(3)关于x的方程能否有三个不同的实根?证明你的结论.21.(12分)设函数.(1)当时,求不等式的解集;(2)若不等式恒成立,求实数a的取值范围.22.(10分)如图,椭圆的长轴长为,点、、为椭圆上的三个点,为椭圆的右端点,过中心,且,.(1)求椭圆的标准方程;(2)设、是椭圆上位于直线同侧的两个动点(异于、),且满足,试讨论直线与直线斜率之间的关系,并求证直线的斜率为定值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】
根据题意,五人分成四组,先求出两人组成一组的所有可能的分组种数,再将甲乙组成一组的情况,即可求出概率.【详解】五人分成四组,先选出两人组成一组,剩下的人各自成一组,所有可能的分组共有种,甲和乙分在同一组,则其余三人各自成一组,只有一种分法,与场地无关,故甲和乙恰好在同一组的概率是.故选:A.【点睛】本题考查组合的应用和概率的计算,属于基础题.2、C【解析】
分情况讨论,由间接法得到“数”必须排在前两节,“礼”和“乐”必须分开的事件个数,不考虑限制因素,总数有种,进而得到结果.【详解】当“数”位于第一位时,礼和乐相邻有4种情况,礼和乐顺序有2种,其它剩下的有种情况,由间接法得到满足条件的情况有当“数”在第二位时,礼和乐相邻有3种情况,礼和乐顺序有2种,其它剩下的有种,由间接法得到满足条件的情况有共有:种情况,不考虑限制因素,总数有种,故满足条件的事件的概率为:故答案为:C.【点睛】解排列组合问题要遵循两个原则:①按元素(或位置)的性质进行分类;②按事情发生的过程进行分步.具体地说,解排列组合问题常以元素(或位置)为主体,即先满足特殊元素(或位置),再考虑其他元素(或位置).3、D【解析】
画出约束条件的可行域,利用目标函数的几何意义求解最大值即可.【详解】解:画出满足条件的平面区域,如图示:如图点坐标分别为,目标函数的几何意义为,可行域内点与坐标原点的距离的平方,由图可知到原点的距离最大,故.故选:D【点睛】本题考查了简单的线性规划问题,考查数形结合思想,属于中档题.4、B【解析】
求得直线的方程,联立直线的方程和双曲线的方程,求得两点坐标的关系,根据列方程,化简后求得离心率.【详解】设,依题意直线的方程为,代入双曲线方程并化简得,故,设焦点坐标为,由于以为直径的圆经过点,故,即,即,即,两边除以得,解得.故,故选B.【点睛】本小题主要考查直线和双曲线的交点,考查圆的直径有关的几何性质,考查运算求解能力,属于中档题.5、D【解析】
根据框图,模拟程序运行,即可求出答案.【详解】运行程序,,
,,,,,结束循环,故输出,故选:D.【点睛】本题主要考查了程序框图,循环结构,条件分支结构,属于中档题.6、A【解析】
先化简已知得,再根据题意得出f(x)的最小值正周期T为1×2,再求出ω的值.【详解】由题得,设x1,x2为f(x)=2sin(ωx﹣)(ω>0)的两个零点,且的最小值为1,∴=1,解得T=2;∴=2,解得ω=π.故选A.【点睛】本题考查了三角恒等变换和三角函数的图象与性质的应用问题,是基础题.7、B【解析】
作出两集合所表示的点的图象,可得选项.【详解】由题意得,集合A表示以原点为圆心,以2为半径的圆,集合B表示函数的图象上的点,作出两集合所表示的点的示意图如下图所示,得出两个图象有两个交点:点A和点B,所以两个集合有两个公共元素,所以元素个数为2,故选:B.【点睛】本题考查集合的交集运算,关键在于作出集合所表示的点的图象,再运用数形结合的思想,属于基础题.8、A【解析】
根据图象可知,函数为奇函数,以及函数在上单调递增,且有一个零点,即可对选项逐个验证即可得出.【详解】首先对4个选项进行奇偶性判断,可知,为偶函数,不符合题意,排除B;其次,在剩下的3个选项,对其在上的零点个数进行判断,在上无零点,不符合题意,排除D;然后,对剩下的2个选项,进行单调性判断,在上单调递减,不符合题意,排除C.故选:A.【点睛】本题主要考查图象的识别和函数性质的判断,意在考查学生的直观想象能力和逻辑推理能力,属于容易题.9、B【解析】
由,,三点共线,可得,转化,利用均值不等式,即得解.【详解】因为点为中点,所以,又因为,,所以.因为,,三点共线,所以,所以,当且仅当即时等号成立,所以的最小值为1.故选:B【点睛】本题考查了三点共线的向量表示和利用均值不等式求最值,考查了学生综合分析,转化划归,数学运算的能力,属于中档题.10、A【解析】
由茎叶图中数据可求得中位数和平均数,即可判断①②③,再根据数据集中程度判断④.【详解】由茎叶图可得甲同学成绩的中位数为,乙同学成绩的中位数为,故①错误;,,则,故②错误,③正确;显然甲同学的成绩更集中,即波动性更小,所以方差更小,故④正确,故选:A【点睛】本题考查由茎叶图分析数据特征,考查由茎叶图求中位数、平均数.11、A【解析】
利用间接法求解,首先对6门课程全排列,减去“乐”排在第一节的情况,再减去“射”和“御”两门课程相邻的情况,最后还需加上“乐”排在第一节,且“射”和“御”两门课程相邻的情况;【详解】解:根据题意,首先不做任何考虑直接全排列则有(种),当“乐”排在第一节有(种),当“射”和“御”两门课程相邻时有(种),当“乐”排在第一节,且“射”和“御”两门课程相邻时有(种),则满足“乐”不排在第一节,“射”和“御”两门课程不相邻的排法有(种),故选:.【点睛】本题考查排列、组合的应用,注意“乐”的排列对“射”和“御”两门课程相邻的影响,属于中档题.12、A【解析】
分别判断命题和的真假性,然后根据含有逻辑联结词命题的真假性判断出正确选项.【详解】对于命题,由于,所以命题为真命题.对于命题,由于,由解得,且,所以是奇函数,故为真命题.所以为真命题.、、都是假命题.故选:A【点睛】本小题主要考查诱导公式,考查函数的奇偶性,考查含有逻辑联结词命题真假性的判断,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
先求得复数,再由复数模的计算公式即得.【详解】,,则.故答案为:【点睛】本题考查复数的四则运算和求复数的模,是基础题.14、0或6【解析】
计算得到圆心,半径,根据得到,利用圆心到直线的距离公式解得答案.【详解】,即,圆心,半径.,故圆心到直线的距离为,即,故或.故答案为:或.【点睛】本题考查了根据直线和圆的位置关系求参数,意在考查学生的计算能力和转化能力。15、20.2【解析】
分别求出随机变量ξ1和ξ2的分布列,根据期望和方差公式计算得解.【详解】设a,b∈{1,2,1,4,5},则p(ξ1=a),其ξ1分布列为:ξ112145PE(ξ1)(1+2+1+4+5)=1.D(ξ1)[(1﹣1)2+(2﹣1)2+(1﹣1)2+(4﹣1)2+(5﹣1)2]=2.ξ2=1.4|a﹣b|的可能取值分别为:1.4,2.3,4.2,5.6,P(ξ2=1.4),P(ξ2=2.3),P(ξ2=4.2),P(ξ2=5.6),可得分布列.ξ21.42.34.25.6PE(ξ2)=1.42.34.25.62.3.∴E(ξ1)﹣E(ξ2)=0.2.故答案为:2,0.2.【点睛】此题考查随机变量及其分布,关键在于准确求出随机变量取值的概率,根据公式准确计算期望和方差.16、1【解析】
由题意得展开式的二项式系数之和求出的值,然后再计算展开式各项系数的和.【详解】由题意展开式的二项式系数之和为,即,故,令,则展开式各项系数的和为.故答案为:【点睛】本题考查了二项展开式的二项式系数和项的系数和问题,需要运用定义加以区分,并能够运用公式和赋值法求解结果,需要掌握解题方法.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】
(1)分类讨论去绝对值,得到每段的解集,然后取并集得到答案.(2)先得到的取值范围,判断,为正,去掉绝对值,转化为在时恒成立,得到,,在恒成立,从而得到的取值范围.【详解】(1)当时,,由,得,即,或,即,或,即,综上:或,所以不等式的解集为.(2),,因为,,所以,又,,,得.不等式恒成立,即在时恒成立,不等式恒成立必须,,解得.所以,解得,结合,所以,即的取值范围为.【点睛】本题考查分类讨论解绝对值不等式,含有绝对值的不等式的恒成立问题.属于中档题.18、(1)见解析;(2).【解析】
(1)分两种情况讨论:①两切线、中有一条切线斜率不存在时,求出两切线的方程,验证结论成立;②两切线、的斜率都存在,可设切线的方程为,将该直线的方程与椭圆的方程联立,由可得出关于的二次方程,利用韦达定理得出两切线的斜率之积为,进而可得出结论;(2)求出点、的坐标,利用两点间的距离公式结合韦达定理得出,换元,可得出,利用二次函数的基本性质可求得的取值范围.【详解】(1)由于点在半圆上,则.①当两切线、中有一条切线斜率不存在时,可求得两切线方程为,或,,此时;②当两切线、的斜率都存在时,设切线的方程为(、的斜率分别为、),,,,.综上所述,;(2)根据题意得、,,令,则,所以,当时,,当时,.因此,的取值范围是.【点睛】本题考查椭圆两切线垂直的证明,同时也考查了弦长的取值范围的计算,考查计算能力,属于中等题.19、(Ⅰ)详见解析;(Ⅱ).【解析】
(Ⅰ)取中点,连结、,四边形是平行四边形,由,,得,从而,,求出,由此能证明.(Ⅱ)以为原点,、、所在直线分别为,,轴,建立空间直角坐标系,利用向量法能求出二面角的余弦值.【详解】证明:(Ⅰ)取中点,连结、,∵,,∴四边形是平行四边形,∵,,,∴,∴,∴,在中,,又∵为的中点,∴,又∵,∴.解:(Ⅱ)∵,,,∴,以为原点,、、所在直线分别为,,轴,建立空间直角坐标系,设,则,,,,∴,,,设面的法向量,则,取,得,同理,得平面的法向量,设二面角的平面角为,则,∴二面角的余弦值为.【点睛】本题考查面面垂直及线面垂直性质定理、线面垂直判定与性质定理以及利用空间向量求线面角与二面角,考查基本分析求解能力,属中档题.20、(1),;(2);(3)不能,证明见解析【解析】
(1)求出,结合导数的几何意义即可求解;(2)构造,则原题等价于对任意恒成立,即时,,利用导数求最值即可,值得注意的是,可以通过代特殊值,由求出的范围,再研究该范围下单调性;(3)构造并进行求导,研究单调性,结合函数零点存在性定理证明即可.【详解】(1),,曲线在点处的切线方程为,,解得.(2)记,整理得,由题知,对任意恒成立,对任意恒成立,即时,,,解得,当时,对任意,,,,,即在单调递增,此时,实数的取值范围为.(3)关于的方程不可能有三个不同的实根,以下给出证明:记
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 现代物流管理的人才培养与教育创新
- 生物质颗粒培训课件
- 水厂建设技术方案与工艺流程
- 社区健康教育与健康促进的融合实践
- TSG21-2025固定式压力容器安全技术(送审稿)
- 社区教育资源分配与公共设施布局研究
- 18 古诗三首浪淘沙(其一)教学设计-2024-2025学年六年级上册语文统编版
- =和>、<教学设计-2024-2025学年一年级上册数学苏教版
- 人教版九年级英语全册第二单元同步教学设计
- 11 葡萄沟 (教学设计)2024-2025学年- 部编版语文二年级上册
- 数学六年级上册《弧长》课件
- 5篇高中生研究项目详细报告
- 个人ip运营策划方案
- 《盛开的紫荆花》课件
- 广东省广州市黄埔区2023-2024学年八年级上学期期末生物试卷+
- 我们怎样思维经验与教育
- 北京市丰台区市级名校2024届数学高一第二学期期末检测模拟试题含解析
- 赵匡胤:中国北宋时期的开国皇帝2
- 中国纺织服装制造业年度授信政策指引研究报告
- 零基础学机器学习
- 西方绘画艺术流派(最全)课件
评论
0/150
提交评论