河北省承德市鹰城一中2023-2024学年高三数学试题5月29日第9周测试题_第1页
河北省承德市鹰城一中2023-2024学年高三数学试题5月29日第9周测试题_第2页
河北省承德市鹰城一中2023-2024学年高三数学试题5月29日第9周测试题_第3页
河北省承德市鹰城一中2023-2024学年高三数学试题5月29日第9周测试题_第4页
河北省承德市鹰城一中2023-2024学年高三数学试题5月29日第9周测试题_第5页
已阅读5页,还剩12页未读 继续免费阅读

河北省承德市鹰城一中2023-2024学年高三数学试题5月29日第9周测试题.doc 免费下载

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河北省承德市鹰城一中2023-2024学年高三数学试题5月29日第9周测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知,则()A. B. C. D.22.设为虚数单位,为复数,若为实数,则()A. B. C. D.3.“”是“函数(为常数)为幂函数”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分又不必要条件4.某学校组织学生参加英语测试,成绩的频率分布直方图如图,数据的分组依次为,若低于60分的人数是18人,则该班的学生人数是()A.45 B.50 C.55 D.605.已知抛物线:,点为上一点,过点作轴于点,又知点,则的最小值为()A. B. C.3 D.56.函数的图象可能为()A. B.C. D.7.某单位去年的开支分布的折线图如图1所示,在这一年中的水、电、交通开支(单位:万元)如图2所示,则该单位去年的水费开支占总开支的百分比为()A. B. C. D.8.已知底面为边长为的正方形,侧棱长为的直四棱柱中,是上底面上的动点.给出以下四个结论中,正确的个数是()①与点距离为的点形成一条曲线,则该曲线的长度是;②若面,则与面所成角的正切值取值范围是;③若,则在该四棱柱六个面上的正投影长度之和的最大值为.A. B. C. D.9.甲在微信群中发了一个6元“拼手气”红包,被乙、丙、丁三人抢完,若三人均领到整数元,且每人至少领到1元,则乙获得“最佳手气”(即乙领到的钱数多于其他任何人)的概率是()A. B. C. D.10.已知向量与的夹角为,,,则()A. B.0 C.0或 D.11.已知为圆:上任意一点,,若线段的垂直平分线交直线于点,则点的轨迹方程为()A. B.C.() D.()12.已知集合,则()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知函数,则曲线在处的切线斜率为________.14.已知双曲线的渐近线与准线的一个交点坐标为,则双曲线的焦距为______.15.在平面直角坐标系中,双曲线的右准线与渐近线的交点在抛物线上,则实数的值为________.16.已知,,且,若恒成立,则实数的取值范围是____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)椭圆:的离心率为,点为椭圆上的一点.(1)求椭圆的标准方程;(2)若斜率为的直线过点,且与椭圆交于两点,为椭圆的下顶点,求证:对于任意的实数,直线的斜率之积为定值.18.(12分)已知函数,不等式的解集为.(1)求实数,的值;(2)若,,,求证:.19.(12分)如图,在平面直角坐标系xOy中,已知椭圆C:(a>b>0)的离心率为.且经过点(1,),A,B分别为椭圆C的左、右顶点,过左焦点F的直线l交椭圆C于D,E两点(其中D在x轴上方).(1)求椭圆C的标准方程;(2)若△AEF与△BDF的面积之比为1:7,求直线l的方程.20.(12分)在平面直角坐标系中,已知直线的参数方程为(为参数)和曲线(为参数),以坐标原点为极点,轴的非负半轴为极轴建立极坐标系.(1)求直线和曲线的极坐标方程;(2)在极坐标系中,已知点是射线与直线的公共点,点是与曲线的公共点,求的最大值.21.(12分)(本小题满分12分)已知椭圆C:x2a2+y(1)求椭圆C的标准方程;(2)过点A(1,0)的直线与椭圆C交于点M,N,设P为椭圆上一点,且OM+ON=t22.(10分)已知a,b∈R,设函数f(x)=(I)若b=0,求f(x)的单调区间:(II)当x∈[0,+∞)时,f(x)的最小值为0,求a+5b的最大值.注:

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】

结合求得的值,由此化简所求表达式,求得表达式的值.【详解】由,以及,解得..故选:B【点睛】本小题主要考查利用同角三角函数的基本关系式化简求值,考查二倍角公式,属于中档题.2、B【解析】

可设,将化简,得到,由复数为实数,可得,解方程即可求解【详解】设,则.由题意有,所以.故选:B【点睛】本题考查复数的模长、除法运算,由复数的类型求解对应参数,属于基础题3、A【解析】

根据幂函数定义,求得的值,结合充分条件与必要条件的概念即可判断.【详解】∵当函数为幂函数时,,解得或,∴“”是“函数为幂函数”的充分不必要条件.故选:A.【点睛】本题考查了充分必要条件的概念和判断,幂函数定义的应用,属于基础题.4、D【解析】

根据频率分布直方图中频率=小矩形的高×组距计算成绩低于60分的频率,再根据样本容量求出班级人数.【详解】根据频率分布直方图,得:低于60分的频率是(0.005+0.010)×20=0.30,∴样本容量(即该班的学生人数)是60(人).故选:D.【点睛】本题考查了频率分布直方图的应用问题,也考查了频率的应用问题,属于基础题5、C【解析】

由,再运用三点共线时和最小,即可求解.【详解】.故选:C【点睛】本题考查抛物线的定义,合理转化是本题的关键,注意抛物线的性质的灵活运用,属于中档题.6、C【解析】

先根据是奇函数,排除A,B,再取特殊值验证求解.【详解】因为,所以是奇函数,故排除A,B,又,故选:C【点睛】本题主要考查函数的图象,还考查了理解辨析的能力,属于基础题.7、A【解析】

由折线图找出水、电、交通开支占总开支的比例,再计算出水费开支占水、电、交通开支的比例,相乘即可求出水费开支占总开支的百分比.【详解】水费开支占总开支的百分比为.故选:A【点睛】本题考查折线图与柱形图,属于基础题.8、C【解析】

①与点距离为的点形成以为圆心,半径为的圆弧,利用弧长公式,可得结论;②当在(或时,与面所成角(或的正切值为最小,当在时,与面所成角的正切值为最大,可得正切值取值范围是;③设,,,则,即,可得在前后、左右、上下面上的正投影长,即可求出六个面上的正投影长度之和.【详解】如图:①错误,因为,与点距离为的点形成以为圆心,半径为的圆弧,长度为;②正确,因为面面,所以点必须在面对角线上运动,当在(或)时,与面所成角(或)的正切值为最小(为下底面面对角线的交点),当在时,与面所成角的正切值为最大,所以正切值取值范围是;③正确,设,则,即,在前后、左右、上下面上的正投影长分别为,,,所以六个面上的正投影长度之,当且仅当在时取等号.故选:.【点睛】本题以命题的真假判断为载体,考查了轨迹问题、线面角、正投影等知识点,综合性强,属于难题.9、B【解析】

将所有可能的情况全部枚举出来,再根据古典概型的方法求解即可.【详解】设乙,丙,丁分别领到x元,y元,z元,记为,则基本事件有,,,,,,,,,,共10个,其中符合乙获得“最佳手气”的有3个,故所求概率为,故选:B.【点睛】本题主要考查了枚举法求古典概型的方法,属于基础题型.10、B【解析】

由数量积的定义表示出向量与的夹角为,再由,代入表达式中即可求出.【详解】由向量与的夹角为,得,所以,又,,,,所以,解得.故选:B【点睛】本题主要考查向量数量积的运算和向量的模长平方等于向量的平方,考查学生的计算能力,属于基础题.11、B【解析】

如图所示:连接,根据垂直平分线知,,故轨迹为双曲线,计算得到答案.【详解】如图所示:连接,根据垂直平分线知,故,故轨迹为双曲线,,,,故,故轨迹方程为.故选:.【点睛】本题考查了轨迹方程,确定轨迹方程为双曲线是解题的关键.12、B【解析】

先由得或,再计算即可.【详解】由得或,,,又,.故选:B【点睛】本题主要考查了集合的交集,补集的运算,考查学生的运算求解能力.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】

求导后代入可构造方程求得,即为所求斜率.【详解】,,解得:,即在处的切线斜率为.故答案为:.【点睛】本题考查切线斜率的求解问题,考查导数的几何意义,属于基础题.14、1【解析】

由双曲线的渐近线,以及求得的值即可得答案.【详解】由于双曲线的渐近线与准线的一个交点坐标为,所以,即①,把代入,得,即②又③联立①②③,得.所以.故答案是:1.【点睛】本题考查双曲线的性质,注意题目“双曲线的渐近线与准线的一个交点坐标为”这一条件的运用,另外注意题目中要求的焦距即,容易只计算到,就得到结论.15、【解析】

求出双曲线的右准线与渐近线的交点坐标,并将该交点代入抛物线的方程,即可求出实数的方程.【详解】双曲线的半焦距为,则双曲线的右准线方程为,渐近线方程为,所以,该双曲线右准线与渐近线的交点为.由题意得,解得.故答案为:.【点睛】本题考查利用抛物线上的点求参数,涉及到双曲线的准线与渐近线方程的应用,考查计算能力,属于中等题.16、(-4,2)【解析】试题分析:因为当且仅当时取等号,所以考点:基本不等式求最值三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)证明见解析【解析】

(1)运用离心率公式和点满足椭圆方程,解得,,进而得到椭圆方程;(2)设直线,代入椭圆方程,运用韦达定理和直线的斜率公式,以及点在直线上满足直线方程,化简整理,即可得到定值.【详解】(1)因为,所以,①又椭圆过点,所以②由①②,解得所以椭圆的标准方程为.(2)证明设直线:,联立得,设,则易知故所以对于任意的,直线的斜率之积为定值.【点睛】本题考查椭圆的方程的求法,注意运用离心率公式和点满足椭圆方程,考查直线方程和椭圆方程联立,运用韦达定理和直线的斜率公式,化简整理,考查运算能力,属于中档题.18、(1),.(2)见解析【解析】

(1)分三种情况讨论即可(2)将,的值代入,然后利用均值定理即可.【详解】解:(1)不等式可化为.即有或或.解得,或或.所以不等式的解集为,故,.(2)由(1)知,,即,由,得,,当且仅当,即,时等号成立.故,即.【点睛】考查绝对值不等式的解法以及用均值定理证明不等式,中档题.19、(1)(2).【解析】

(1)利用离心率和椭圆经过的点建立方程组,求解即可.(2)把面积之比转化为纵坐标之间的关系,联立方程结合韦达定理可求.【详解】解:(1)设焦距为2c,由题意知:;解得,所以椭圆的方程为.(2)由(1)知:F(﹣1,0),设l:,D(,),E(,),<0<①,,,②;③;由①②得:,,代入③得:,又,故,因此,直线l的方程为.【点睛】本题主要考查椭圆方程的求解及椭圆中的面积问题,椭圆方程一般利用待定系数法,建立方程组进行求解,面积问题的合理转化是求解的关键,侧重考查数学运算的核心素养.20、(1),;(2)【解析】

(1)先将直线l和圆C的参数方程化成普通方程,再分别求出极坐标方程;(2)写出点M和点N的极坐标,根据极径的定义分别表示出和,利用三角函数的性质求出的最大值.【详解】解:(1),,即极坐标方程为,,极坐标方程.(2)由题可知,,当时,.【点睛】本题考查了参数方程、普通方程和极坐标方程的互化问题,极径的定义,以及三角函数的恒等变换,属于中档题.21、(1)x24+【解析】试题分析:本题主要考查椭圆的标准方程及其几何性质、直线与椭圆的位置关系等基础知识,考查学生的分析问题解决问题的能力、转化能力、计算能力.第一问,先利用离心率、a2=b2+c2、四边形的面积列出方程,解出a和b的值,从而得到椭圆的标准方程;第二问,讨论直线MN的斜率是否存在,当直线MN的斜率存在时,直线方程与椭圆方程联立,消参,利用韦达定理,得到x1+x2、x1x试题解析:(1)∵e=22,  ∴又S=12×2a×2b=4∴椭圆C的标准方程为x2(2)由题意知,当直线MN斜率存在时,设直线方程为y=k(x-1),M(x联立方程x24+因为直线与椭圆交于两点,所以Δ=16k∴x又∵OM∴因为点P在椭圆x24+即2k又∵|OM即|NM|<4化简得:13k4-5k2∵t2=1-当直线MN的斜率不存在时,M(1,  62∴t∈[-1,  考点:椭圆的标准方程及其几何性质、直线与椭圆的位置关系.22、(I)详见解析;(II)2【解析】

(I)求导得到f'(x)=ex-a,讨论a≤0

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论